4
◆
Electrostatically Sensitive (ES) Devices
Some semiconductor (solid state) devices can be damaged easily by static electricity.
Such components commonly are called Electrostatically Sensitive (ES) Devices.
The examples of typical ES devices are integrated circuits, some field-effect transistors and
semiconductor “chip” components. The following techniques should be used to help reduce the incidence
of component damage caused by static electricity.
1. Immediately before handling any semiconductor component or semiconductor-equipped assembly,
remove off any electrostatic charge on your body by touching any kind of known earth ground.
Alternatively, obtain and wear a commercially available discharging wrist strap device which should be
removed for potential shock reasons prior to applying power to the unit under test.
2. After removing an electrical assembly equipped with ES devices, place the assembly on a conductive
surface such as aluminum foil to prevent electrostatic charge buildup or exposure to the assembly.
3. Only use a grounded-tip soldering iron to solder or unsolder ES devices.
4. Only use an anti-static type solder removal device. Some solder removal devices not classified as “anti-
static” can generate enough electrical charges to damage ES devices.
5. Do not use freon-propelled chemicals. These can generate enough electrical charges to damage ES devices.
6. Do not remove a replacement ES device from its protective package until immediately before you are
ready to install it. (Most replacement ES devices are packaged with leads electrically shorted together
by conductive foam, aluminum foil or comparable conductive material).
7. Immediately before removing the protective material from the leads of a replacement ES device, touch
the protective material to the chassis or circuit assembly into which the device will be installed.
8. Minimize body movements when handling unpackaged replacement ES devices. (Otherwise, harmful
motion such as brushing clothes fabric or the lifting of your foot from a carpeted floor can generate
enough static electricity to damage an ES device).
◆
General Soldering Guidelines
1. Use a grounded-tip, low-wattage soldering iron with appropriate tip size and shape that will maintain
tip temperature within a 550°F-660°F (288°C-316°C) range.
2. Use an appropriate gauge of RMA resin-core solder composed of 60 parts tin/40 parts lead.
3. Keep the soldering iron tip clean.
4. Throughly clean the surface to be soldered. Use a small wire-bristle (0.5 inch or 1.25cm) brush with a
metal handle. Do not use freon-propelled spray-on cleaners.
5. Use the following soldering technique:
a. Allow the soldering iron tip to reach normal temperature (550°F to 660°F or 288°C to 316°C)
b. Hold the soldering iron tip and solder strand against the component lead until the solder melts.
c. Quickly move the soldering iron tip to the junction of the component lead and the printed circuit foil,
and hold it there until the solder flows onto and around both the component lead and the foil.
d. Closely inspect the solder area and remove any excess or splashed solder with a small wire-bristle brush.
CAUTION: Be sure that no power is applied to the chassis or circuit and observe all other safety precautions.
CAUTION: Work quickly to avoid overheating the circuit board printed foil.
Summary of Contents for 529B
Page 1: ...ServiceManual XGA COLOR MONITOR Model 529B DAEWOO ELECTRONICS CO LTD OVERSEAS SERVICE DEPT...
Page 32: ...30 PCB LAYOUT Main PCB Component Side...
Page 33: ...31 Main PCB Solder Side...
Page 34: ...32 CRT PCB Component Side CRT PCB Solder Side...
Page 35: ...33 SCHEMATIC DIAGRAM Power Connection section...
Page 36: ...34 Control Vertical Out section...
Page 37: ...35 Horizontal section...
Page 38: ...36 Video section...