background image

STK15C88

Document Number: 001-50593 Rev. **

Page 3 of 15

Device Operation

The STK15C88 is a versatile memory chip that provides several
modes of operation. The STK15C88 can operate as a standard
32K x 8 SRAM. It has a

 

32K x 8 nonvolatile element shadow to

which the SRAM information can be copied, or from which the
SRAM can be updated in nonvolatile mode.

SRAM Read

The STK15C88 performs a READ cycle whenever CE and OE
are LOW while WE is HIGH. The address specified on pins A

0–14

determines the 32,768 data bytes accessed. When the READ is
initiated by an address transition, the outputs are valid after a
delay of t

AA

 (READ cycle 1). If the READ is initiated by CE or OE,

the outputs are valid at t

ACE

 or at t

DOE

, whichever is later (READ

cycle 2). The data outputs repeatedly respond to address
changes within the t

AA

 access time without the need for transi-

tions on any control input pins, and remains valid until another
address change or until CE or OE is brought HIGH.

SRAM Write

A WRITE cycle is performed whenever CE and WE are LOW.
The address inputs must be stable prior to entering the WRITE
cycle and must remain stable until either CE or WE goes HIGH
at the end of the cycle. The data on the common IO pins DQ

0–7

are written into the memory if it has valid t

SD

, before the end of

a WE controlled WRITE or before the end of an CE controlled
WRITE. Keep OE HIGH during the entire WRITE cycle to avoid
data bus contention on common IO lines. If OE is left LOW,
internal circuitry turns off the output buffers t

HZWE 

after WE goes

LOW.

AutoStore Operation

The STK15C88 uses the intrinsic system capacitance to perform
an automatic STORE on power down. As long as the system
power supply takes at least t

STORE

 to decay from V

SWITCH

 down

to 3.6V, the STK15C88 will safely and automatically store the
SRAM data in nonvolatile elements on power down.

In order to prevent unneeded STORE operations, automatic
STOREs will be ignored unless at least one WRITE operation
has taken place since the most recent STORE or RECALL cycle.
Software initiated STORE cycles are performed regardless of
whether a WRITE operation has taken place. 

Hardware RECALL (Power Up)

During power up or after any low power condition (V

CC

  <

V

RESET

), an internal RECALL request is latched. When V

CC

once again exceeds the sense voltage of V

SWITCH

, a RECALL

cycle is automatically initiated and takes t

HRECALL

 to complete.

If the STK15C88 is in a WRITE

 

state at the end of power up

RECALL, the SRAM

 

data is corrupted. To help avoid this

situation, a 10 Kohm resistor is connected either between WE
and system V

CC

 or between CE and system V

CC

.

Software STORE

Data is transferred from the SRAM to the nonvolatile memory by
a software address sequence. The STK15C88 software STORE
cycle is initiated by executing sequential CE controlled READ
cycles from six specific address locations in exact order. During
the STORE cycle, an erase of the previous nonvolatile data is
first performed, followed by a program of the nonvolatile
elements. When a STORE cycle is initiated, input and output are
disabled until the cycle is completed.

Because a sequence of READs from specific addresses is used
for STORE initiation, it is important that no other READ or WRITE
accesses intervene in the sequence. If they intervene, the
sequence is aborted and no STORE or RECALL takes place.

To initiate the software STORE cycle, the following READ
sequence is performed:

1. Read address 0x0E38, Valid READ

2. Read address 0x31C7, Valid READ

3. Read address 0x03E0, Valid READ

4. Read address 0x3C1F, Valid READ

5. Read address 0x303F, Valid READ

6. Read address 0x0FC0, Initiate STORE cycle

The software sequence is clocked with CE controlled READs.
When the sixth address in the sequence is entered, the STORE
cycle commences and the chip is disabled. It is important that
READ cycles and not WRITE cycles are used in the sequence.
It is not necessary that OE is LOW for a valid sequence. After the
t

STORE

 cycle time is fulfilled, the SRAM is again activated for

READ and WRITE operation.

Software RECALL

Data is transferred from the nonvolatile memory to the SRAM by
a software address sequence. A software RECALL cycle is
initiated with a sequence of READ operations in a manner similar
to the software STORE initiation. To initiate the RECALL cycle,
the following sequence of CE controlled READ operations is
performed:

1. Read address 0x0E38, Valid READ

2. Read address 0x31C7, Valid READ

3. Read address 0x03E0, Valid READ

4. Read address 0x3C1F, Valid READ

5. Read address 0x303F, Valid READ

6. Read address 0x0C63, Initiate RECALL cycle

Internally, RECALL is a two step procedure. First, the SRAM data
is cleared, and then the nonvolatile information is transferred into
the SRAM cells. After the t

RECALL

 cycle time, the SRAM is once

again ready for READ and WRITE operations. The RECALL
operation does not alter the data in the nonvolatile elements. The
nonvolatile data can be recalled an unlimited number of times.

[+] Feedback 

Summary of Contents for STK15C88

Page 1: ... with a nonvolatile element in each memory cell The embedded nonvolatile elements incorporate QuantumTrap technology producing the world s most reliable nonvolatile memory The SRAM provides unlimited read and write cycles while independent nonvolatile data resides in the highly reliable QuantumTrap cell Data transfers from the SRAM to the nonvolatile elements the STORE operation takes place automa...

Page 2: ...Input Write Enable Input Active LOW When the chip is enabled and WE is LOW data on the IO pins is written to the specific address location CE E Input Chip Enable Input Active LOW When LOW selects the chip When HIGH deselects the chip OE G Input Output Enable Active LOW The active LOW OE input enables the data output buffers during read cycles Deasserting OE HIGH causes the IO pins to tri state VSS...

Page 3: ...L to complete If the STK15C88 is in a WRITE state at the end of power up RECALL the SRAM data is corrupted To help avoid this situation a 10 Kohm resistor is connected either between WE and system VCC or between CE and system VCC Software STORE Data is transferred from the SRAM to the nonvolatile memory by a software address sequence The STK15C88 software STORE cycle is initiated by executing sequ...

Page 4: ... TTL input levels 5 The operating temperature 6 The VCC level 7 IO loading Figure 2 Current Versus Cycle Time WRITE Figure 3 Current Versus Cycle Time READ Best Practices nvSRAM products have been used effectively for over 15 years While ease of use is one of the product s main system values experience gained working with hundreds of applica tions has resulted in the following suggestions as best ...

Page 5: ...Output Data Output Data 1 2 L H 0x0E38 0x31C7 0x03E0 0x3C1F 0x303F 0x0C63 Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM Nonvolatile RECALL Output Data Output Data Output Data Output Data Output Data Output Data 1 2 Notes 1 The six consecutive addresses must be in the order listed WE must be high during all six consecutive CE controlled cycles to enable a nonvolatile cycle 2 While there are 15 ...

Page 6: ... 100 70 mA mA ICC2 Average VCC Current during STORE All Inputs Do Not Care VCC Max Average current for duration tSTORE 3 mA ICC3 Average VCC Current at tRC 200 ns 5V 25 C Typical WE VCC 0 2V All other inputs cycling Dependent on output loading and cycle rate Values obtained without output loads 10 mA ICC4 Average Current during AutoStore Cycle All Inputs Do Not Care VCC Max Average current for dur...

Page 7: ... following table the thermal resistance parameters are listed 4 Parameter Description Test Conditions 28 SOIC 300 mil 28 SOIC 330 mil Unit ΘJA Thermal Resistance Junction to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance per EIA JESD51 TBD TBD C W ΘJC Thermal Resistance Junction to Case TBD TBD C W Figure 4 AC Test Loads AC Test Conditions 5 0V ...

Page 8: ...hip Disable to Output Inactive 10 15 ns tLZOE 7 tGLQX Output Enable to Output Active 0 0 ns tHZOE 7 tGHQZ Output Disable to Output Inactive 10 15 ns tPU 4 tELICCH Chip Enable to Power Active 0 0 ns tPD 4 tEHICCL Chip Disable to Power Standby 25 45 ns Switching Waveforms Figure 5 SRAM Read Cycle 1 Address Controlled 5 7 Figure 6 SRAM Read Cycle 2 CE and OE Controlled 5 W5 W W2 5 66 4 7 287 7 9 5 66...

Page 9: ...s Setup to Start of Write 0 0 ns tHA tWHAX tEHAX Address Hold After End of Write 0 0 ns tHZWE 7 8 tWLQZ Write Enable to Output Disable 10 15 ns tLZWE 7 tWHQX Output Active After End of Write 5 5 ns Switching Waveforms Figure 7 SRAM Write Cycle 1 WE Controlled 8 Figure 8 SRAM Write Cycle 2 CE Controlled 8 tWC tSCE tHA tAW tSA tPWE tSD tHD tHZWE tLZWE ADDRESS CE WE DATA IN DATA OUT DATA VALID HIGH I...

Page 10: ...on 10 ms VRESET Low Voltage Reset Level 3 6 V VSWITCH Low Voltage Trigger Level 4 0 4 5 V Switching Waveforms Figure 9 AutoStore Power Up RECALL 9 96 7 95 6 7 32 5 83 5 4 7 287 XWR6WRUH 9 W 5 W6725 32 5 83 5 52 1 287 XWR6WRUH 12 5 9 127 2 2 95 6 7 52 1 287 XWR6WRUH 5 1 9 5 78516 29 96 7 52 1 287 12 6725 8 72 12 65 0 5 7 6 12 5 9 127 2 2 95 6 7 Notes 10 tHRECALL starts from the time VCC rises above...

Page 11: ... tELAX Address Hold Time 20 20 ns tRECALL RECALL Duration 20 20 μs Switching Waveforms Figure 10 CE Controlled Software STORE RECALL Cycle 12 tRC tRC tSA tSCE tHACE tSTORE tRECALL DATA VALID DATA VALID 6 S S E R D D A 1 S S E R D D A HIGH IMPEDANCE ADDRESS CE OE DQ DATA Notes 11 The software sequence is clocked on the falling edge of CE without involving OE double clocking will abort the sequence ...

Page 12: ...Commercial STK15C88 NF45 51 85026 28 Pin SOIC 300 mil STK15C88 SF45TR 51 85058 28 Pin SOIC 330 mil STK15C88 SF45 51 85058 28 Pin SOIC 330 mil STK15C88 NF45ITR 51 85026 28 Pin SOIC 300 mil Industrial STK15C88 NF45I 51 85026 28 Pin SOIC 300 mil STK15C88 SF45ITR 51 85058 28 Pin SOIC 330 mil STK15C88 SF45I 51 85058 28 Pin SOIC 330 mil All parts are Pb free The above table contains Final information Co...

Page 13: ...7 0 015 0 38 0 050 1 27 0 013 0 33 0 019 0 48 0 026 0 66 0 032 0 81 0 697 17 70 0 713 18 11 0 004 0 10 1 14 15 28 PART S28 3 STANDARD PKG SZ28 3 LEAD FREE PKG MIN MAX NOTE 1 JEDEC STD REF MO 119 2 BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION END FLASH BUT MOLD PROTRUSION END FLASH SHALL NOT EXCEED 0 010 in 0 254 mm PER SIDE 3 DIMENSIONS IN INCHES 4 PACKAGE WEIGHT 0 85gms DOES INCLUDE MOL...

Page 14: ...STK15C88 Document Number 001 50593 Rev Page 14 of 15 Figure 12 28 Pin 330 mil SOIC 51 85058 Package Diagrams continued 51 85058 A Feedback ...

Page 15: ...as specified in the applicable agreement Any reproduction modification translation compilation or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress Disclaimer CYPRESS MAKES NO WARRANTY OF ANY KIND EXPRESS OR IMPLIED WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNE...

Reviews: