background image

CY7C1410JV18, CY7C1425JV18
CY7C1412JV18, CY7C1414JV18

Document #: 001-12561 Rev. *D

Page 13 of 26

IDCODE

The IDCODE instruction loads a vendor-specific, 32-bit code into
the instruction register. It also places the instruction register
between the TDI and TDO pins and shifts the IDCODE out of the
device when the TAP controller enters the Shift-DR state. The
IDCODE instruction is loaded into the instruction register at
power up or whenever the TAP controller is given a
Test-Logic-Reset state.

SAMPLE Z

The SAMPLE Z instruction connects the boundary scan register
between the TDI and TDO pins when the TAP controller is in a
Shift-DR state. The SAMPLE Z command puts the output bus
into a High-Z state until the next command is given during the
Update IR state.

SAMPLE/PRELOAD

SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When
the SAMPLE/PRELOAD instructions are loaded into the
instruction register and the TAP controller is in the Capture-DR
state, a snapshot of data on the input and output pins is captured
in the boundary scan register.

The user must be aware that the TAP controller clock can only
operate at a frequency up to 20 MHz, while the SRAM clock
operates more than an order of magnitude faster. Because there
is a large difference in the clock frequencies, it is possible that
during the Capture-DR state, an input or output undergoes a
transition. The TAP may then try to capture a signal while in
transition (metastable state). This does not harm the device, but
there is no guarantee as to the value that is captured.
Repeatable results may not be possible.

To guarantee that the boundary scan register captures the
correct value of a signal, the SRAM signal must be stabilized
long enough to meet the TAP controller's capture setup plus hold
times (t

CS

 and t

CH

). The SRAM clock input might not be captured

correctly if there is no way in a design to stop (or slow) the clock
during a SAMPLE/PRELOAD instruction. If this is an issue, it is
still possible to capture all other signals and simply ignore the
value of the CK and CK captured in the boundary scan register.

After the data is captured, it is possible to shift out the data by
putting the TAP into the Shift-DR state. This places the boundary
scan register between the TDI and TDO pins.

PRELOAD places an initial data pattern at the latched parallel
outputs of the boundary scan register cells before the selection
of another boundary scan test operation.

The shifting of data for the SAMPLE and PRELOAD phases can
occur concurrently when required, that is, while the data
captured is shifted out, the preloaded data can be shifted in.

BYPASS

When the BYPASS instruction is loaded in the instruction register
and the TAP is placed in a Shift-DR state, the bypass register is
placed between the TDI and TDO pins. The advantage of the
BYPASS instruction is that it shortens the boundary scan path
when multiple devices are connected together on a board.

EXTEST

The EXTEST instruction drives the preloaded data out through
the system output pins. This instruction also connects the
boundary scan register for serial access between the TDI and
TDO in the Shift-DR controller state.

EXTEST OUTPUT BUS TRI-STATE

IEEE Standard 1149.1 mandates that the TAP controller be able
to put the output bus into a tri-state mode.

The boundary scan register has a special bit located at bit #108.
When this scan cell, called the “extest output bus tri-state,” is
latched into the preload register during the Update-DR state in
the TAP controller, it directly controls the state of the output
(Q-bus) pins, when the EXTEST is entered as the current
instruction. When HIGH, it enables the output buffers to drive the
output bus. When LOW, this bit places the output bus into a
High-Z condition.

This bit can be set by entering the SAMPLE/PRELOAD or
EXTEST command, and then shifting the desired bit into that cell,
during the Shift-DR state. During Update-DR, the value loaded
into that shift-register cell latches into the preload register. When
the EXTEST instruction is entered, this bit directly controls the
output Q-bus pins. Note that this bit is pre-set LOW to enable the
output when the device is powered up, and also when the TAP
controller is in the Test-Logic-Reset state.

Reserved

These instructions are not implemented but are reserved for
future use. Do not use these instructions.

[+] Feedback 

Summary of Contents for CY7C1410JV18

Page 1: ...us Pipelined SRAMs equipped with QDR II architecture QDR II architecture consists of two separate ports the read port and the write port to access the memory array The read port has data outputs to support read operations and the write port has data inputs to support write operations QDR II architecture has separate data inputs and data outputs to completely eliminate the need to turn around the d...

Page 2: ...ead Data Reg RPS WPS Control Logic Address Register Reg Reg Reg 8 21 16 8 NWS 1 0 VREF Write Add Decode Write Reg 8 A 20 0 21 CQ CQ DOFF Q 7 0 8 8 8 Write Reg C C 2M x 8 Array 2M x 9 Array CLK A 20 0 Gen K K Control Logic Address Register D 8 0 Read Add Decode Read Data Reg RPS WPS Control Logic Address Register Reg Reg Reg 9 21 18 9 BWS 0 VREF Write Add Decode Write Reg 9 A 20 0 21 CQ CQ DOFF Q 8...

Page 3: ...g RPS WPS Control Logic Address Register Reg Reg Reg 18 20 36 18 BWS 1 0 VREF Write Add Decode Write Reg 18 A 19 0 20 CQ CQ DOFF Q 17 0 18 18 18 Write Reg C C 1M x 18 Array 512K x 36 Array CLK A 18 0 Gen K K Control Logic Address Register D 35 0 Read Add Decode Read Data Reg RPS WPS Control Logic Address Register Reg Reg Reg 36 19 72 36 BWS 3 0 VREF Write Add Decode Write Reg 36 A 18 0 19 CQ CQ DO...

Page 4: ...S VSS VSS VDDQ NC NC Q0 M NC NC NC VSS VSS VSS VSS VSS NC NC D0 N NC D7 NC VSS A A A VSS NC NC NC P NC NC Q7 A A C A A NC NC NC R TDO TCK A A A C A A A TMS TDI CY7C1425JV18 4M x 9 1 2 3 4 5 6 7 8 9 10 11 A CQ NC 72M A WPS NC K NC 144M RPS A A CQ B NC NC NC A NC 288M K BWS0 A NC NC Q4 C NC NC NC VSS A A A VSS NC NC D4 D NC D5 NC VSS VSS VSS VSS VSS NC NC NC E NC NC Q5 VDDQ VSS VSS VSS VDDQ NC D3 Q3...

Page 5: ...A C A A NC D0 Q0 R TDO TCK A A A C A A A TMS TDI CY7C1414JV18 1M x 36 1 2 3 4 5 6 7 8 9 10 11 A CQ NC 288M NC 72M WPS BWS2 K BWS1 RPS A NC 144M CQ B Q27 Q18 D18 A BWS3 K BWS0 A D17 Q17 Q8 C D27 Q28 D19 VSS A A A VSS D16 Q7 D8 D D28 D20 Q19 VSS VSS VSS VSS VSS Q16 D15 D7 E Q29 D29 Q20 VDDQ VSS VSS VSS VDDQ Q15 D6 Q6 F Q30 Q21 D21 VDDQ VDD VSS VDD VDDQ D14 Q14 Q5 G D30 D22 Q22 VDDQ VDD VSS VDD VDDQ ...

Page 6: ...8 for CY7C1410JV18 4M x 9 2 arrays each of 2M x 9 for CY7C1425JV18 2M x 18 2 arrays each of 1M x 18 for CY7C1412JV18 and 1M x 36 2 arrays each of 512K x 36 for CY7C1414JV18 Therefore only 21 address inputs are needed to access the entire memory array of CY7C1410JV18 and CY7C1425JV18 20 address inputs for CY7C1412JV18 and 19 address inputs for CY7C1414JV18 These inputs are ignored when the appro pr...

Page 7: ...cted directly to GND or left unconnected DOFF Input DLL Turn Off Active LOW Connecting this pin to ground turns off the DLL inside the device The timing in the DLL turned off operation differs from those listed in this data sheet For normal operation this pin can be connected to a pull up through a 10 Kohm or less pull up resistor The device behaves in DDR I mode when the DLL is turned off In this...

Page 8: ... states the outputs following the next rising edge of the output clocks C C This allows for a seamless transition between devices without the insertion of wait states in a depth expanded memory Write Operations Write operations are initiated by asserting WPS active at the rising edge of the positive input clock K On the same K clock rise the data presented to D 17 0 is latched and stored into the ...

Page 9: ...The timing for the echo clocks is shown in the Switching Characteristics on page 22 DLL These chips utilize a Delay Lock Loop DLL that is designed to function between 120 MHz and the specified maximum clock frequency During power up when the DOFF is tied HIGH the DLL is locked after 1024 cycles of stable clock The DLL can also be reset by slowing or stopping the input clock K and K for a minimum o...

Page 10: ... 0 is written into the device D 17 9 remains unaltered H L L H During the data portion of a write sequence CY7C1410JV18 only the upper nibble D 7 4 is written into the device D 3 0 remains unaltered CY7C1412JV18 only the upper byte D 17 9 is written into the device D 8 0 remains unaltered H L L H During the data portion of a write sequence CY7C1410JV18 only the upper nibble D 7 4 is written into t...

Page 11: ...n into the device D 35 9 remains unaltered L H H H L H During the Data portion of a write sequence only the lower byte D 8 0 is written into the device D 35 9 remains unaltered H L H H L H During the Data portion of a write sequence only the byte D 17 9 is written into the device D 8 0 and D 35 18 remains unaltered H L H H L H During the Data portion of a write sequence only the byte D 17 9 is wri...

Page 12: ...g edge of TCK Instruction Register Three bit instructions can be serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TAP Controller Block Diagram on page 15 Upon power up the instruction register is loaded with the IDCODE instruction It is also loaded with the IDCODE instruction if the controller is placed in a reset stat...

Page 13: ...can register After the data is captured it is possible to shift out the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD places an initial data pattern at the latched parallel outputs of the boundary scan register cells before the selection of another boundary scan test operation The shifting of data for the SAMPLE and PREL...

Page 14: ...troller follows 9 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 SELECT IR SCAN CAPTURE IR SHIFT IR EXIT1 IR PAUSE IR EXIT2 IR UPDATE IR Note 9 The 0 1 next to each state represents the value at TMS at the rising edge of TCK Feedback ...

Page 15: ...HIGH Voltage 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 μA 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 108 0 1 2 Instruction Register Bypass Register Selection Circuitry Selection Circuitry TAP Controller TDI TDO TCK TMS Notes 10 These characteristics pertain to the TAP inputs TMS TCK TDI and TDO Parallel load lev...

Page 16: ...IH TDI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns TAP Timing and Test Conditions Figure 2 shows the TAP timing and test conditions 14 Figure 2 TAP Timing and Test Conditions tTL tTH a TDO CL 20 pF Z0 50Ω GND 0 9V 50Ω 1 8V 0V ALL INPUT PULSES 0 9V Test Clock Test Mode Select TCK TMS Te...

Page 17: ...truction Codes Instruction Code Description EXTEST 000 Captures the input and output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TDO This operation does not affect SRAM operation SAMPLE Z 010 Captures the input and output contents Places the boundary scan register between TDI and TDO Forces all SRAM output drivers to a High Z state...

Page 18: ... 8P 35 10E 63 2A 91 3L 8 9R 36 10D 64 1A 92 1M 9 11P 37 9E 65 2B 93 1L 10 10P 38 10C 66 3B 94 3N 11 10N 39 11D 67 1C 95 3M 12 9P 40 9C 68 1B 96 1N 13 10M 41 9D 69 3D 97 2M 14 11N 42 11B 70 3C 98 3P 15 9M 43 11C 71 1D 99 2N 16 9N 44 9B 72 2C 100 2P 17 11L 45 10B 73 3E 101 1P 18 11M 46 11A 74 2D 102 3R 19 9L 47 10A 75 2E 103 4R 20 10L 48 9A 76 1E 104 4P 21 11K 49 8B 77 2F 105 5P 22 10K 50 7C 78 3F 1...

Page 19: ...Provide stable power and clock K K for 1024 cycles to lock the DLL DLL Constraints DLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The DLL functions at frequencies down to 120 MHz If the input clock is unstable and the DLL is enabled then the DLL may lock onto an incorrect frequency causing unstable SRAM behavior To avoid DLL locking p...

Page 20: ...2 0 12 V VOL Output LOW Voltage Note 17 VDDQ 2 0 12 VDDQ 2 0 12 V VOH LOW Output HIGH Voltage IOH 0 1 mA Nominal Impedance VDDQ 0 2 VDDQ V VOL LOW Output LOW Voltage IOL 0 1 mA Nominal Impedance VSS 0 2 V VIH Input HIGH Voltage VREF 0 1 VDDQ 0 3 V VIL Input LOW Voltage 0 3 VREF 0 1 V IX Input Leakage Current GND VI VDDQ 5 5 μA IOZ Output Leakage Current GND VI VDDQ Output Disabled 5 5 μA VREF Inpu...

Page 21: ...eters Parameter Description Test Conditions 165 FBGA Package Unit ΘJA Thermal Resistance Junction to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance in accordance with EIA JESD51 17 2 C W ΘJC Thermal Resistance Junction to Case 3 2 C W AC Test Loads and Waveforms 1 25V 0 25V R 50Ω 5 pF INCLUDING JIG AND SCOPE ALL INPUT PULSES Device RL 50Ω Z0 50Ω...

Page 22: ... Valid 0 45 0 45 ns tCQOH tCHCQX Echo Clock Hold after C C Clock Rise 0 45 0 45 ns tCQD tCQHQV Echo Clock High to Data Valid 0 27 0 30 ns tCQDOH tCQHQX Echo Clock High to Data Invalid 0 27 0 30 ns tCQH tCQHCQL Output Clock CQ CQ HIGH 22 1 43 1 55 ns tCQHCQH tCQHCQH CQ Clock Rise to CQ Clock Rise rising edge to rising edge 22 1 43 1 55 ns tCHZ tCHQZ Clock C C Rise to High Z Active to High Z 23 24 0...

Page 23: ...D51 D61 D31 D11 D10 D60 Q C C DON T CARE UNDEFINED t CQ CQ tKHCH tCO tKHCH tCLZ CHZ tKH tKL Q00 Q01 Q20 tKHKH tCYC Q21 Q40 Q41 tCQD tDOH tCCQO tCQOH tCCQO tCQOH tCQDOH tCQH tCQHCQH Notes 25 Q00 refers to output from address A0 Q01 refers to output from the next internal burst address following A0 that is A0 1 26 Outputs are disabled High Z one clock cycle after a NOP 27 In this example if address ...

Page 24: ... Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1425JV18 267BZI CY7C1412JV18 267BZI CY7C1414JV18 267BZI CY7C1410JV18 267BZXI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Pb Free CY7C1425JV18 267BZXI CY7C1412JV18 267BZXI CY7C1414JV18 267BZXI 250 CY7C1410JV18 250BZC 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Commercial CY7C1425JV18 250BZC CY7C1412JV18 ...

Page 25: ...X Ø0 25 M C A B Ø0 05 M C B A 0 15 4X 0 35 0 06 1 40 MAX SEATING PLANE 0 53 0 05 0 25 C 0 15 C PIN 1 CORNER TOP VIEW BOTTOM VIEW 2 3 4 5 6 7 8 9 10 10 00 14 00 B C D E F G H J K L M N 11 11 10 9 8 6 7 5 4 3 2 1 P R P R K M N L J H G F E D C B A C 1 00 5 00 0 36 0 14 0 06 SOLDER PAD TYPE NON SOLDER MASK DEFINED NSMD NOTES PACKAGE WEIGHT 0 65g JEDEC REFERENCE MO 216 DESIGN 4 6C PACKAGE CODE BB0AD 51...

Page 26: ...se of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement Any reproduction modification translation compilation or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress Disclaimer CYPRESS MAKES NO WARRAN...

Reviews: