background image

CM6800T 

(Turbo-Speed PFC+Green PWM)

 

http://www.championmicro.com.tw                               

 

EPA/85+

 

PFC+PWM COMBO CONTROLLER 

Design for High Efficient Power Supply 

 

2010/08/03 

Rev. 1.2 

                                  Champion Microelectronic Corporation 

                            17   

Error Amplifier Compensation

 

The PWM loading of the PFC can be modeled as a negative 

resistor; an increase in input voltage to the PWM causes a 
decrease in the input current. This response dictates the 
proper compensation of the two transconductance error 
amplifiers. Figure 2 shows the types of compensation networks 
most commonly used for the voltage and current error 
amplifiers, along with their respective return points. The current 
loop compensation is returned to V

REF

 to produce a soft-start 

characteristic on the PFC: as the reference voltage comes up 
from zero volts, it creates a differentiated voltage on I

EAO

which 

prevents the PFC from immediately demanding a full duty 
cycle on its boost converter. 
 

PFC Voltage Loop 

There are two major concerns when compensating the 

voltage loop error amplifier, V

EAO

; stability and transient 

response. Optimizing interaction between transient response 
and stability requires that the error amplifier’s open-loop 
crossover frequency should be 1/2 that of the line frequency, 
or 23Hz for a 47Hz line (lowest anticipated international power 
frequency).  

 

deviate from its 2.5V (nominal) value. If this happens, the 
transconductance of the voltage error amplifier, GMv will 
increase significantly, as shown in the Typical Performance 
Characteristics. This raises the gain-bandwidth product of the 
voltage loop, resulting in a much more rapid voltage loop 
response to such perturbations than would occur with a 
conventional linear gain characteristics. 

The Voltage Loop Gain (S) 

CV

V

DC

EAO

2

OUTDC

IN

FB

EAO

OUT

FB

EAO

OUT

Z

*

GM

*

C

*

S

*

Δ

V

*

V

2.5V

*

P

Δ

V

Δ

V

*

Δ

V

Δ

V

*

Δ

V

Δ

V

=

 

Z

CV

:

 Compensation Net Work for the Voltage Loop 

GM

v

:

 Transconductance of VEAO 

P

IN

:

 Average PFC Input Power 

V

OUTDC

:

 PFC Boost Output Voltage; typical designed value is 

380V. 

C

DC

:

 PFC Boost Output Capacitor

 

PFC Current Loop 

The current transcondutance amplifier, GMi, I

EAO

compensation is similar to that of the voltage error amplifier, 
V

EAO

 with exception of the choice of crossover frequency. 

The crossover frequency of thecurrent amplifier should be at 
least 10 times that of the voltage amplifier, to prevent 
interaction with the voltage loop. It should also be limited to 
less than 1/6th that of the switching frequency, e.g. 8.33kHz for 
a 50kHz switching frequency. 
 

 
 
The gain vs. input voltage of the CM6800T’s voltage error 

amplifier, V

EAO

 has a specially shaped non-linearity such that 

under steady-state operating conditions the transconductance 
of the error amplifier, GMv is at a local minimum. Rapid 
perturbation in line or load conditions will cause the input to the 
voltage error amplifier (V

FB

) to   

I

SENSE

 Filter, the RC filter between R

SENSE

 and I

SENSE

 : 

There are 2 purposes to add a filter at I

SENSE

 pin: 

1.) Protection: During start up or inrush current conditions, it 

will have a large voltage cross Rs which is the sensing 
resistor of the PFC boost converter. It requires the I

SENSE

Filter to attenuate the energy. 

2.) To reduce L, the Boost Inductor: The I

SENSE

Filter To 

reduce L, the Boost Inductor: The I

SENSE

Filter also can 

reduce the Boost Inductor value since the I

SENSE

Filter 

behaves like an integrator before going I

SENSE

which is the 

input of the current error amplifier, IEAO. 

The I

SENSE

 Filter is a RC filter. The resistor value of the I

SENSE

Filter is between 100 ohm and 50 ohm because I

OFFSET

x the 

resistor can generate an offset voltage of IEAO. By selecting 
R

FILTER

equal to 50 ohm will keep the offset of the IEAO less 

than 5mV. Usually, we design the pole of I

SENSE

Filter at 

fpfc/6=8.33Khz, one sixth of the PFC switching frequency. 
Therefore, the boost inductor can be reduced 6 times without 
disturbing the stability. Therefore, the capacitor of the I

SENSE

Filter, C

FILTER

, will be around 381nF.

 

 

 

Summary of Contents for CM6800T

Page 1: ... 68Khz frtct 272Khz for CM6800T 3 Adjust all high voltage resistor around 5 mega ohm or higher 4 VRMS pin pin 4 needs to be 1 14V at VIN 80VAC for universal input application from line input from 80VAC to 270VAC 5 At full load the average Veao needs to around 4 5V and the ripple on the Veao needs to be less than 250mV when the load triggers the light load comparator 6 Soft Start pin pin 5 the soft...

Page 2: ...16 15 14 13 12 11 10 9 IEAO IAC ISENSE VRMS SS VDC RAMP1 RAMP2 VEAO VFB VREF VCC PFC OUT PWM OUT GND DC ILIMIT PIN DESCRIPTION Operating Voltage Pin No Symbol Description Min Typ Max Unit 1 IEAO PFC transconductance current error amplifier output Gmi 0 VREF V 2 IAC IAC has 2 functions 1 PFC gain modulator reference input 2 Typical RAC resistor is about 6 Mega ohm to sense the line 0 100 uA 3 ISENS...

Page 3: ... VDCmax 1 8 V 9 DC ILIMIT PWM current limit comparator input 0 1 V 10 GND Ground 11 PWM OUT PWM driver output 0 VCC V 12 PFC OUT PFC driver output 0 VCC V 13 VCC Positive supply for CM6800T 10 15 18 V 14 VREF Maximum 3 5mA buffered output for the internal 7 5V reference when VCC 14V 7 5 V 15 VFB PFC transconductance voltage error amplifier input 0 2 5 3 V 16 VEAO PFC transconductance voltage error...

Page 4: ...Mv VCC 13 VEAO MPPFC Zener 16 5V ISENSE 2K VREF 14 VFB PFC CMP 380 OK VEAO 16 S R Q Q S ABSOLUTE MAXIMUM RATINGS Absolute Maximum ratings are those values beyond which the device could be permanently damaged Parameter Min Max Units VCC 18 V IEAO 0 VREF 0 3 V ISENSE Voltage 5 0 7 V GND 0 3 VCC 0 3 V GND 0 3 VCC 0 3 V PFC OUT PWMOUT Voltage on Any Other Pin GND 0 3 VCC 0 3 V IREF 3 5 mA IAC Input Cu...

Page 5: ... PFC Brown Out VRMS Threshold High Room Temperature 25 1 70 1 78 1 86 V VRMS Threshold Low Room Temperature 25 0 98 1 03 1 08 V Hysteresis 710 760 mV Voltage Error Amplifier gmv Input Voltage Range 0 3 V Transconductance VNONINV VINV VEAO 3 35V T 25 25 40 60 μmho Feedback Reference Voltage 2 45 2 52 2 58 V Input Bias Current Note 2 1 0 0 05 μA Output High Voltage 5 8 6 0 V Output Low Voltage 0 1 0...

Page 6: ...AO 0V IAC is open 10 50 mV Output High Voltage 6 8 7 4 7 7 V Output Low Voltage 0 1 0 4 V Sink Current ISENSE 0 5V IEAO 1 5V T 25 40 34 28 μA Source Current ISENSE 0 5V IEAO 4 0V T 25 27 32 37 μA Open Loop Gain DC Gain 30 40 dB Power Supply Rejection Ratio 11V VCC 16 5V 60 75 dB PFC OVP Comparator Threshold Voltage 2 60 2 75 2 85 V Hysteresis 130 220 mV PFC Green Power Detect Comparator Veao Thres...

Page 7: ... V Hysteresis 880 950 1000 mV GAIN Modulator Gain1 Note 3 IAC 20 μA VRMS 1 125 VFB 2 375V T 25 SS VREF 4 4 5 5 6 6 Gain2 Note 3 IAC 20 μ A VRMS 1 45588V VFB 2 375V T 25 SS VREF 4 5 6 Gain3 Note 3 IAC 20 μA VRMS 2 91V VFB 2 375V T 25 SS VREF 1 2 1 5 1 8 Gain4 Note 3 IAC 20 μA VRMS 3 44V VFB 2 375V T 25 SS VREF 0 9 1 05 1 3 Bandwidth Note 4 IAC 40 μA 1 MHz Output Voltage Rmul ISENSE IOFFSET IAC 50 μ...

Page 8: ...UT 100mA T 25 40 ohm Rise Fall Time Note 4 CL 100pF T 25 50 ns PWM Duty Cycle Range 0 49 5 0 50 IOUT 20mA T 25 13 18 ohm IOUT 100mA T 25 18 ohm Output Low Rdson IOUT 10mA VCC 9V 0 5 1 V IOUT 20mA T 25 26 5 40 ohm Output High Rdson IOUT 100mA T 25 40 ohm Rise Fall Time Note 4 CL 100pF 50 ns PWM Comparator Level Shift T 25 1 6 1 8 2 V Soft Start Soft Start Current Room Temperature 25 7 10 12 μA Soft...

Page 9: ...ow 209V the system will reset the PWM soft start The result of the CM6800T Input Line Current has a clean Off and softly On even the system does not reset PWM soft start Dynamic Soft PFC Performance Vin 220 Vac Ch1 is 380V bulk cap voltage which is 100V div Ch3 is Input Line Current which is 1A div Input Line Voltage 220 Vac was turned off for 40mS before reaching PWM Brownout which is 209Vdc when...

Page 10: ...soft start pin CH4 is Vo 12V Output 10 and 20 load turn on waveform at 230Vac Output 50 and 100 load turn on waveform at 230Vac Ch1 is 380V bulk cap voltage which is 100V div Ch1 is 380V bulk cap voltage which is 100V div Ch2 is VCC Ch3 is SS soft start pin CH4 is Vo 12V Ch2 is VCC Ch3 is SS soft start pin CH4 is Vo 12V Dynamic load Ch1 is 380V bulk cap voltage which is 100V div Ch1 is 380V bulk c...

Page 11: ...ich is 100V div Ch3 is PFC stage Mosfet Drain current zoom In Ch3 is PFC stage Mosfet drain current CH4 is Vo 12V 90VAC turn on 500ms turn off 100ms at 100 LOAD Ch2 is AC input voltage which is 100V div Ch3 is PFC stage Mosfet Drain current zoom In Ch3 is PFC stage Mosfet drain current CH4 is Vo 12V 90VAC turn on 500ms turn off 10ms at 10 LOAD Ch2 is AC input voltage which is 100V div Ch3 is PFC s...

Page 12: ...V div Ch3 is PFC stage Mosfet Drain current zoom In Ch3 is PFC stage Mosfet drain current CH4 is Vo 12V 230VAC turn on 500ms turn off 100ms at 10 LOAD Ch2 is AC input voltage which is 100V div Ch3 is PFC stage Mosfet Drain current zoom In Ch3 is PFC stage Mosfet drain current CH4 is Vo 12V 230VAC turn on 500ms turn off 100ms at 100 LOAD Ch2 is AC input voltage which is 100V div Ch3 is PFC stage Mo...

Page 13: ...poration 13 230VAC turn on 500ms turn off 10ms at 10 LOAD Ch2 is AC input voltage which is 100V div Ch3 is PFC stage Mosfet Drain current zoom In Ch3 is PFC stage Mosfet drain current CH4 is Vo 12V 230VAC turn on 500ms turn off 10ms at 100 LOAD Ch2 is AC input voltage which is 100V div Ch3 is PFC stage Mosfet Drain current zoom In Ch3 is PFC stage Mosfet drain current CH4 is Vo 12V ...

Page 14: ...s which use a bridge rectifier and capacitive input filter fed from the line The peak charging effect which occurs on the input filter capacitor in these supplies causes brief high amplitude pulses of current to flow from the power line rather than a sinusoidal current in phase with the line voltage Such supplies present a power factor to the line of less than one i e they cause significant curren...

Page 15: ...ely proportional to VRMS 2 The relationship between VRMS and gain is illustrated in the Typical Performance Characteristics of this page 3 The output of the voltage error amplifier VEAO The gain modulator responds linearly to variations in this voltage The output of the gain modulator is a current signal in the form of a full wave rectified sinusoid at twice the line frequency This current is appl...

Page 16: ...on ISENSE is adequately negative to cancel this increased current Similarly if the gain modulator s output decreases the output duty cycle will decrease to achieve a less negative voltage on the ISENSE pin Cycle By Cycle Current Limiter and Selecting RSENSE The ISENSE pin as well as being a part of the current feedback loop is a direct input to the cycle by cycle current limiter for the PFC sectio...

Page 17: ...sconductance of VEAO PIN Average PFC Input Power VOUTDC PFC Boost Output Voltage typical designed value is 380V CDC PFC Boost Output Capacitor PFC Current Loop The current transcondutance amplifier GMi IEAO compensation is similar to that of the voltage error amplifier VEAO with exception of the choice of crossover frequency The crossover frequency of thecurrent amplifier should be at least 10 tim...

Page 18: ... Microelectronic Corporation 18 2 5V ISENSE 3 RAMP1 7 1 0V PFC OVP Green PFC GMi S R Q Q 0 3V PFC Tri Fault IEAO 1 PFCCLK ZENER 17V Rmul GMv VFB 15 MODULATOR GAIN PFC 2 75V PFC OUT 12 VCC 13 PFC CMP Zener 16 5V VFB VEAO 16 VCC VFB VEAO ISENSE S R Q Q REFERENCE 7 5V PFC ILIMIT MNPFC VREF 14 IAC 2 VRMS 4 0 5V MPPFC Rmul PFC RAMP Figure 1 PFC Section Block Diagram ...

Page 19: ... stage DCILIMIT which provides cycle by cycle current limiting is typically connected to RAMP2 in such applications For voltage mode operation or certain specialized applications RAMP2 can be connected to a separate RC timing network to generate a voltage ramp against which VDC will be compared Under these conditions the use of voltage feed forward from the PFC buss can assist in line regulation a...

Page 20: ...ude of VFB at start up is related both to line voltage and nominal PFC output voltage Typically a 0 05 μF soft start capacitor will allow time for VFB and PFC out to reach their nominal values prior to activation of the PWM section at line voltages between 90Vrms and 265Vrms Generating VCC After turning on CM6800T at 13V the operating voltage can vary from 10V to 17 9V That s the two ways to gener...

Page 21: ... duty cycle of the leading edge modulation is determined during OFF time of the switch Figure 5 shows a leading edge control scheme One of the advantages of this control technique is that it required only one system clock Switch 1 SW1 turns off and switch 2 SW2 turns on at the same instant to minimize the momentary no load period thus lowering ripple voltage generated by the switching action With ...

Page 22: ... 2 49K 1 1000PF 2N2907 GND 10 3M1 3M 1 5V 55Ts 1uF 1M 1 L1A 28TS R16 10 2200PF 2200uF 16V 10K 10 ISO1A 817C VCC TL431 2 3 1 0 2 2W s GND 22uF 25V 4 7K 22K 14K 1 200K 1 PWM IS 0 47uF 8A 600V 2 1 AC INLET L FG N 12V 36 5K 0 47uF 20N60 1 3 2 470pF EMI Circuit VREF 30 1K 30L30 PWM OUT BYV 26EGP 1K MPS751 C B E L4 R5 25 10 0 47UF 1000pF 2200PF 2200uF 16V 20N60 10K GBL408 2 1 3 4 BYV 26EGP 820pF 0 2 2W ...

Page 23: ...4700pF 13K 1 1uF PWM OUT MPS751 C B E 470pF 20N60 16 15 6 1 14 7 10 5 9 8 11 12 4 2 3 13 VEAO VFB VDC IEAO VREF RAMP1 GND SS DCIlim RAMP2 PWMOUT PFCOUT Vrms IAC ISENSE VCC 39 2K 1 VREF 150uF 450V 4 75K 1 1 8W 0 22 2W s 1M 0 047uF 1M 1 2N2907 8A 600V 2 1 47 30 1K L1B 12TS SPARE 0 2 2W S 12V 4 7K 3M 1 10 20N60 55Ts 5V 1M 380VDC 10 TL431 2 3 1 0 1uF GND BYV 26EGP 10 1uF 2200uF 16V 1000pF 243K 10 2K 1...

Page 24: ...PWMOUT PFCOUT Vrms IAC ISENSE VCC 0 1uf 25v 0 47uF 13K 1 GBL408 2 1 3 4 1M 2N2222 10 GND 10 2K 1 0 047uF 20N60 10K 2200PF 22K 36 5K 1000PF 10K PWM OUT 2 49K 1 PWM OUT 22uF 25V 30L30 1uF IN5406 10 470pF 380VDC 20N60 10 MPS751 C B E ERL 35 1M 1 8A 600V 2 1 1000pF 1N5406 1000pF 150uF 450V 470 1M 1 1uF 400V 4 75K 1 1 8W 470pF L3 R5 25 14K 1 GND 2200uF 6 3V VREF 0 047uF PWM IS 1000PF SPARE 39 2K 1 4 7K...

Page 25: ...200PF AC INLET L FG N 2200uF 10V 12V GND 380VDC 2200uF 16V L 1 APS27950 10 2K 1 VREF 1000PF 3M 1 470pF 250V 2 49K 1 0 2 2W S TL431 2 3 1 ISO1A 817C 1M 1 470pF B L1B 12TS MPS751 C B E 20N60 0 22 2W s 14K 1 0 47uF 16V 470pF 0 047uF 10K 0 47uF EI10 PC40 EMI Circuit 39 2K 1 4700pF VCC 150uF 450V 20 BYV 26EGP VCC 1000PF 1000pF 1uF 400V 200K 1 ERL 35 PWM OUT 0 2 2W s 20N60 1 3 2 470 1M 10 GBL408 2 1 3 4...

Page 26: ... PWM http www championmicro com tw EPA 85 PFC PWM COMBO CONTROLLER Design for High Efficient Power Supply 2010 08 03 Rev 1 2 Champion Microelectronic Corporation 26 PACKAGE DIMENSION 16 PIN SOP S16 θ θ 16 PIN PDIP P16 θ PIN 1 ID θ ...

Page 27: ...ve potential risks of death personal injury or severe property or environmental damage CMC integrated circuit products are not designed intended authorized or warranted to be suitable for use in life support applications devices or systems or other critical applications Use of CMC products in such applications is understood to be fully at the risk of the customer In order to minimize risks associa...

Reviews: