background image

6

Phase 1: direct supply to system.

With a thermal energy demand

from  the  room  thermostat,  the  regulator  activates  the  solid  fuel

generator and connects it, once it is able to supply energy, directly

to  the  secondary  circuit  bypassing  the  inertial  water  storage  in

parallel. Valve V5 connects the inertial water storage in parallel with

the heating system so that it can receive any excess heat energy. 

Phase  2:  loading  of  water  storage  with  system  idle.

When the

room  heating  demand  is  met,  with  the  thermostat  no  longer

requesting  heat  energy  but  with  the  solid  fuel  generator  still

capable of providing it (e.g. due to an energy surplus caused by

excessive  fuel  stoking),  the  regulator  connects  the  solid  fuel

generator to the parallel water storage, which thus serves to store

the surplus heat energy.

Phase  3:  unloading  of  water  storage  with  generator  off.

The

parallel water storage is used as an energy source at the time of the

next  room  heating  demand  if  the  solid  fuel  generator  is  not

operating, not yet at working temperature or not stoked with fuel.

The  previously  accumulated  heat  energy  is  thus  drawn  from  the

parallel water storage.

Phase 4: gas boiler activation.

Only when the solid fuel generator is not operating and the parallel

water storage has no energy reserve, it is necessary to start the gas

boiler,  which  at  that  point  is  the  only  device  able  to  supply  heat

energy to the heating system. Valve V5 isolates the parallel water

storage  from  the  rest  of  the  circuit  to  avoid  loading  it  with  heat

energy delivered by the gas boiler.

HEATING

BOILER

HEATING

BOILER

SOLID FUEL

GENERATOR

SOLID FUEL

GENERATOR

SOLID FUEL

GENERATOR

SOLID FUEL

GENERATOR

HEATING

BOILER

HEATING

BOILER

Phase 1: direct supply to system

Phase 2: loading of water storage
with system idle

Phase 3: unloading of water
storage with generator off

Phase 4: gas boiler activation

*Operating logic of program “management of inertial water storage in parallel on the heating system”. 

In accordance with construction and system regulations or depending on system management requirements it may be necessary to use an

inertial water storage on the heating system.

The regulator is supplied as standard with the parameters and probes required to manage a heating system with inertial water storage in

parallel on the heating system.

The operating logic is shown in the adjacent figures:

Summary of Contents for BIOMASS OPTIMISER 1522 Series

Page 1: ...m according to the heating circuit needs Depending on the type and quantity of installed probes the regulator supports the following system solutions heating production of domestic hot water by means...

Page 2: ...acilitate any system checks to be performed When the solid fuel generator is equipped with an anti condensation valve it is good practice to set the minimum working temperature of the solid fuel gener...

Page 3: ...20 1078 95 1366 25 1097 100 1385 30 1117 105 1404 35 1136 110 1423 40 1155 115 1442 45 1175 120 1461 50 1194 140 1536 55 1213 160 1611 60 1232 170 C 20 18 16 14 12 10 8 6 4 14616 13211 11958 10839 98...

Page 4: ...is equipped with a solid fuel generator overtemperature monitoring function When the user settable emergency temperature is reached on the solid fuel generator the regulator generates an alarm signal...

Page 5: ...eating management of inertial water storage in parallel on the heating system S1 S4 S5 PR83 7 5 Heating and domestic hot water with storage management of inertial water storage in parallel on the heat...

Page 6: ...ed heat energy is thus drawn from the parallel water storage Phase 4 gas boiler activation Only when the solid fuel generator is not operating and the parallel water storage has no energy reserve it i...

Page 7: ...s S1 located on the solid fuel generator flow pipe S5 located on the heat exchanger return line and S4 located on the parallel water storage For probe S5 it is advisable to use the following working s...

Page 8: ...ure readings of probes S1 located on the solid fuel generator flow pipe S5 located on the heat exchanger return line and S4 located on the parallel water storage For probe S5 it is advisable to use th...

Page 9: ...olid fuel generator flow pipe S5 located on the heat exchanger return line and S4 located on the parallel water storage For probe S5 it is advisable to use the following working set points 45 C for ra...

Page 10: ...Sol1 on the solar collector and probe Sol2 on the lower section of the tank in tank water storage if higher than the set value solar circuit pump Psol is started Pump Psol continues to run for a selec...

Page 11: ...rature difference T is checked between probe Sol1 on the solar collector and probe Sol2 on the lower section of the domestic water storage if higher than the set value solar circuit pump Psol is start...

Page 12: ...the solar collector and probe Sol2 on the lower section of the direct inertial water storage if higher than the set value solar circuit pump Psol is started Pump Psol continues to run for a selectabl...

Reviews: