background image

Page 9 of 17 

This document is a collaboration between Martin forsberg, Sweden, and Euan MacKenzie, Australia. Copyright Martin Forsberg & 
Euan MacKenzie 2010-11-18 

use a combination of resistors, either in parallel, eg 1.1k // 6.2k; or in series, eg 910

Ω

 + 24

Ω

, to adjust the 

total current. 

If you wanted to measure the current, you could insert a current meter in series with the circuit, but you 
would then have to adjust the circuit for the additional resistance introduced by your current meter, as it 
will also produce a voltage drop. It is therefore easier to measure the voltage drop across each resistor 
with a digital multimeter, as that will have a high input resistance, typically 10M

Ω

, which will not affect the 

circuit as much as the current measurement would do – quite apart from that, you do not need break the 
circuit for voltage measurements! 

This also means that if you need to replace the 90

Ω

 anode current potentiometer, with another value, say 

100

Ω

 (since 90

Ω

 will be hard to find nowadays) you can do that, but then you will need to reduce the 

series resistor, R6, by the additional resistance in the new potentiometer, in order to keep the current at 
12.5mA through the backing-off circuit; in this example, by 10

Ω

. However you will need to make a new 

scale for the anode current potentiometer, and you will get a larger overlap on each range, but it will still 
give the correct measurements for anode current. The practical minimum value will be close to 90

Ω

, as it 

was originally. If for any reason, you need to go lower than 80

Ω

, then you will have to lower each 80

Ω

 

resistor, and increase the current, to maintain exactly 1V. A typical reason for replacing it would be that 
the old one is open circuit, or perhaps has become non-linear, due to wear, or is otherwise damaged. 
Making a new scale is quite easy if you use a 360° protractor, together with a multimeter to measure out 
each step of either 0.1V, or 8

Ω

, and mark them on the protractor, then transferring them to a paper scale. 

Or, alternatively, you can drill a hole through the centre of a fairly large protractor, or a piece of PCB, then 
fasten the potentiometer in the hole and using a large knob on the potentiometer, and as you turn it, mark 
each point on the protractor/pcb, which you can then transfer to a paper scale. 

NB:- There is one case that has not been checked thoroughly so far, and that is whether the gm 
measurements will be affected, if the potentiometer is changed to any value other than 90

Ω

! There is only 

a slight risk of that, since each of the three 240

Ω

 resistors, R24 to R26, are used to compensate for the 

anode current control resistances - this should be investigated further, before I can recommend changing 
the potentiometer for another value; but my guess is that the change doesn't matter, as it is the voltage 
delivered between the two points that form the backing-off circuit, is what the measurement is compared 
with, and since that is unchanged, so then is the current and resistance in that circuit path. 

However, there also the possibility to put a potentiometer with a higher value in, and then shorting out the 
last part of the track above 90

Ω

, and then make a new scale to fit the new potentiometer; then this will 

work just as well as the old one, except that the new scale will be more cramped! 

For the anode current control measurements to be accurate, you must ensure that the remainder of the 
components in the AVO CT160 are within tolerance, and also that the tester is calibrated; however for the 
anode current controls in themselves to be accurate, you must ensure that a voltage of 1V Mean DC is 
developed across each of the 80

Ω

 resistors. 

The other diodes in the CV140 valves, V1 & V2, can also be replaced with Silicon diodes, and fortunately 
the value used for the SET Vg potentiometer, RV3, is large enough so that nothing needs to be changed 
or added there. Each rectifier in the CV140 has a forward voltage drop of approximately 2.2 - 2.9 V, at the 
currents involved (which range from close to 11mA, to up to 14mA, through each diode), whereas a 
Silicon diode has close to 0.7V at these currents. The difference between these voltage drops will be 
taken up by RV3 as it has enough resistance for this adjustment. 

A quick calculation of this follows:- 55V RMS is equivalent to 55 ÷ 1.1107 = 49.52V Mean, which half wave 
rectified, becomes 49.52 ÷ 2 = 24.76V Mean DC. 

For SET Vg calibration purposes, AVO state in their calibration procedure that a voltage of 20.8V Mean 
DC should be present across the Grid Volts control, RV2; this then means that the diode in the CV140 

Summary of Contents for 160A

Page 1: ......

Page 2: ...d R37B as per component list on page 18 of the Service Manual consisting of one 13 Ω selected resistor each SH6 Ground connection for tags 2 5 was missing from original CT160A schematic but can be found in later CT160 schematics and also in the original CT160A CT160 testers WIRES COMPONENTS Moved for clarity The third schematic has been modified in the following areas All of the corrections above ...

Page 3: ...ore detail in this article The AVO CT160A has been referenced to as the Dutch Military versions in a few places and I have found no other mentions of it Please also understand that I have not had access to an AVO CT160A myself for this article only to second hand pictures and information plus photocopies of AVO manuals However the modifications are not complicated once you understand how an AVO CT...

Page 4: ...n all other aspects the modification status of the AVO CT160A corresponds to the last modification status of the AVO CT160 up to resistor R36 for the Grid to Cathode connection Modification A C Replacing the valves with Silicon diodes meant that the extra heater winding is not necessary any more and it has been removed from the schematics but since no actual AVO CT160A have been available for chec...

Page 5: ...as more expensive to have it there and have it changed in step with the grid volts switch or maybe AVO found that it was not necessary to have that voltage there Modification G Here AVO have changed the calibration resistor circuit introducing a potentiometer RV6 for calibration purposes and also changed resistor R3 to 1 22 MΩ AVO also changed the circuit by introducing a resistor R4 wrongly named...

Page 6: ...2 Modifications done by AVO to the over current relay protection Here is some more new information as I have studied the soon finished AVO CT160A manual in some more depth By finished I mean that I have soon finished cleaning up all the pages While AVO was changing the current range for Diodes and Rectifiers by adding the 180mA range they also changed which voltages that are used for testing Diode...

Page 7: ...result the factor between the numbers is exactly three and one third 3 333 That was what I meant with the fantastically well correspondance between the AVO Mk IV and the AVO CT160A here in this circuit Is this just a coincidence or something that AVO planned My guess is that it is planned but the resistance for the resistors and RL3 will of course vary between each tester but in the AVO CT160A ser...

Page 8: ... replacing the CV140 valves with Silicon diodes In the AVO CT160 the anode current is measured by means of a Potentiometer which is a laboratory instrument for the precision measurement of an unknown voltage If you did Physics in the sixth form at school you would have encountered the Potentiometer in its simplest form it is comprised of a 1m length of Nichrome wire alongside a 1m wooden ruler dri...

Page 9: ...on diodes don t fit any old diodes that just happen to be lying in your scrap box it is well worth fitting soft recovery diodes which are designed to minimise circuit switching oscillations for example Philips BYW96E which is rated at 3A and 1kV Vrrm Admittedly we don t require a forward current of 3A however the lower current soft recovery diodes don t seem to have a sufficiently high enough Vrrm...

Page 10: ...ter and as you turn it mark each point on the protractor pcb which you can then transfer to a paper scale NB There is one case that has not been checked thoroughly so far and that is whether the gm measurements will be affected if the potentiometer is changed to any value other than 90Ω There is only a slight risk of that since each of the three 240Ω resistors R24 to R26 are used to compensate for...

Page 11: ...ent of 0 22mA If the balancing out of the Anode Current controls has been exact then no current will flow However if this is not the case any residual current flowing in the circuit can now be balanced out by fine adjustment of the Anode Current control thus enabling the balancing out procedure to be more precise This will ensure that when the gm measurement is performed when the mA V dial is turn...

Page 12: ...V the Anode voltage is already rectified by a silicon diode The voltage from the 66V rms winding is only used to keep the grid negative during the half cycle where the anode of the valve is driven negative by the AC Anode voltage and is not used for any measurement purposes in the TEST and GAS positions According to the AVO Patent No 606707 this is to ensure that no current is drawn through the di...

Page 13: ...nts though firstly it is difficult to access the anode voltage selector switch without having to remove a lot of the mechanical structure so the easiest place to fit the diode is at one of the tags for the anode current relay coil RL3 It is the middle row of the six tags and the anode coil has a much lower resistance than the two other coils between 5 and 6Ω Secondly as AVO discovered it is necess...

Page 14: ...act FSD value of 30µA is done via the magnetic shunt which is located under the RHS needle stop It is a hinged plated steel arm which is mounted on a neoprene bush it shorts out some of the magnetic flux across the pole gap It is or it should be cemented to the existing ferromagnet you will need to break the cement in order to adjust the shunt and then re cement it when the adjustment is correct I...

Page 15: ... the AVO CT160 has a total internal resistance of approximately 3250Ω So to protect the meter from overload by a too high current you will need to have a total resistance in the measuring circuit that will only allow a maximum current close to 30µA to be drawn With a standard 1 2V NiMH that means a total resistance of 40kΩ when the meter resistance is subtracted that leaves 36 750Ω With the follow...

Page 16: ...lypropylene type or failing that a non polarised electrolytic just be sure to use a good long life model with very low leakage AVO originally used a small 8µF 12V electrolytic this is not recommended as there is insufficient polarising voltage so they rapidly become leaky Note there is nothing magic about the value of 8µF just remember it was a standard value in the industry at the time The time c...

Page 17: ...ng adjustment of the magnetic shunt arm inside the meter or it could have been stored in a place where the meter has been exposed to a powerful magnetic field which have affected the magnet although this is not such a probable cause In this case it is also better to send the meter to Herts Meter Co Ltd than to fiddle around with it yourself as they are so easily damaged The magnetic shunt arm is s...

Page 18: ...node circuit measuring resistor at 200Ω as that affects all of the resistors on all ranges as that resistor is the resistor used for measurement purposes Appendix The calculation of the total resistance of the Grid voltage and mA V control circuit The meter has a total internal resistance of 3 250Ω which is in parallel with the shunt resistor R9 which has a resistance of 10kΩ results in a total re...

Page 19: ......

Page 20: ......

Page 21: ......

Page 22: ......

Page 23: ......

Page 24: ......

Page 25: ......

Page 26: ......

Page 27: ......

Page 28: ......

Page 29: ......

Page 30: ......

Page 31: ......

Page 32: ......

Page 33: ......

Page 34: ......

Page 35: ......

Page 36: ......

Page 37: ......

Page 38: ......

Page 39: ......

Page 40: ......

Page 41: ......

Page 42: ......

Page 43: ......

Page 44: ......

Page 45: ......

Page 46: ......

Page 47: ......

Page 48: ......

Page 49: ......

Page 50: ......

Page 51: ......

Page 52: ......

Page 53: ......

Page 54: ......

Page 55: ......

Page 56: ......

Page 57: ......

Page 58: ......

Page 59: ......

Page 60: ......

Page 61: ......

Page 62: ......

Page 63: ......

Page 64: ......

Page 65: ......

Page 66: ......

Page 67: ......

Page 68: ......

Page 69: ......

Page 70: ......

Page 71: ......

Page 72: ......

Page 73: ......

Page 74: ......

Page 75: ......

Page 76: ......

Page 77: ......

Page 78: ......

Page 79: ......

Reviews: