background image

AUBER INSTRUMENTS

WWW.AUBERINS.COM

2011.02

P4/8

The things you should know about alarm
1) Absolute alarm and deviation alarm

High (or low) limit absolute alarm is set by the specific temperatures that the 
alarm will be on. Deviation high (or low) alarm is set by how many degrees 
above (or below) the control target temperature (SV) that the alarm will be on. 
e.g. Assuming ALM1=1000 ºF, Hy-1=5 ºF, SV=700 ºF. When the probe 
temperature (PV) is above 705, the deviation alarm will be on. When the 
temperature is above 1000 ºF, the process high alarm will be on. Later, when 
SV changes to 600 ºF, the deviation alarm will be changed to 605 but process 
high alarm will remain the same. Here the Hysteresis Band (Hy) setting is 
ignored. Please see 4.5.2 for details.

2) Alarm Suppression feature

Sometimes, user may not want the low alarm to be turned on when starting 
the controller at a temperature below the low alarm setting. The Alarm 
Suppression feature will suppress the alarm from turning on when the 
controller is powered up (or SV changes). The alarms can only be activated

after

 the PV has reached SV. 

This feature is controlled by the B constant of the COOL parameter (see 4.14). 
The default setting is alarm suppression on. If you use the AL1 or AL2 relay for 
a control application that needs it to be active as soon as the controller is 
powered up, you need to turn off the alarm suppression by setting B=0.

3) Assignment of the relays for the alarms

AL1 and AL2 are the name of the two relays used for alarm output. AL1 is the 
alarm relay 1 and AL2 is alarm relay 2. Please do not confuse the relays with 
alarm parameter ALM1 (process high alarm) and ALM2 (process low alarm). 
Either the AL1 or the AL2 can be used for any of the four alarms. AL-P (alarm 
output definition) is a parameter that allows you to select the relay(s) to be 
activated when the alarm set condition is met. 
You can set all four alarms to activate the one relay (AL1 or AL2), but you 
can’t activate both relays for with just one alarm.

4) Display of the alarm

When AL1 or AL2 relay is activated, the LED on the upper left will light up. If 
you have multiple alarms assigned to a single relay, you might want to know 
which alarm activated the relay. This can be done by setting the E constant in 
the AL-P parameter (see 4.13). When E=0, the bottom display of the controller 
will alternately display the SV and the activated alarm parameter.

5) Activate the AL1 and AL2 by time instead of temperature

For the controllers with the ramp and soak function (SYL-2342P and SYL-
2352P), AL1 and AL2 can be activated when the process reaches a specific 
time. This is discussed in the section 3.7 of “Supplementary Instruction Manual 
for ramp/soak option.

4.4.2 Hysteresis Band  “Hy”

The Hysteresis Band parameter Hy is also referred as Dead Band, or 
Differential. It permits protection of the on/off control from high switching 
frequency caused by process input fluctuation. Hysteresis Band parameter is 
used for on/off control, 4-alarm control as well as the on/off control at auto 
tuning.  For example: 1) When controller is set for on/off heating control mode, 
the output will turn off when temperature goes above SV+Hy and on again 
when it drops to below SV-Hy. 2) If the high alarm is set at 800 °F and 
hysteresis is set for 2 °F, the high alarm will be on at 802 °F (ALM1+Hy) and 
off at 798 °F (ALM1-Hy).
Please note that the cycle time can also affect the action. If the temperature 
passes the Hy set point right after the start of a cycle, the controller will not 
respond to the Hy set point until the next cycle. If cycle time is set to 20 
seconds, the action can be delay as long as 20 seconds. Users can reduce 
the cycle time to avoid the delay.

tuning from the front panel is inhibited to prevent accidental re-starting of the 
auto tuning process. To start auto tuning again, set At=1 or At=2.

4.5 Control action explanations
4.5.1 PID

Please note that because this controller uses fuzzy logic enhanced PID 
control software, the definition of the control constants (P, I and d) are 
different than that of the traditional proportional, integral, and derivative 
parameters. 
In most cases the fuzzy logic enhanced PID control is very adaptive and may 
work well without changing the initial PID parameters. If not, users may need 
to use auto-tune function to let the controller determine the parameters 
automatically. If the auto tuning results are not satisfactory, you can manually 
fine-tune the PID constants for improved performance. Or you can try to 
modify the initial PID values and perform auto tune again. Sometimes the 
controller will get the better parameters.
The auto-tune can be started in two ways. 1) Set At=2. It will start 
automatically after 10 seconds. 2) Set At=1. Then you can start the auto-tune 
any time during the normal operation by pressing the A/M key. During auto 
tuning, the instrument executes on-off control. After 2-3 times on-off action, 
the microprocessor in the instrument will analyze the period, amplitude, 
waveform of the oscillation generated by the on-off control, and calculate the 
optimal control parameter value. The instrument begins to perform accurate 
artificial intelligence control after auto tuning is finished. If you want to exit 
from auto tuning mode, press and hold the (A/M) key for about 2 seconds 
until the blinking of "At" symbol is stopped in the lower display window. 
Generally, you will only need perform auto tuning once. After the auto tuning 
is finished. The instrument will set parameter “At” to 3, which will prevent the 
(A/M) key from triggering auto-tune. This will prevent an accidental repeat of 
the auto-tuning process.
(1) Proportional constant “P”
Please note the P constant is not defined as Proportional Band as in the 
traditional model. Its unit is not in degrees. A larger constant results in larger 
and quicker action, which is the opposite of the traditional proportional band 
value. It also functions in the entire control range rather than a limited band.
If you are controlling a very fast response system (>1 °F/second) that fuzzy 
logic is not quick enough to adjust, set P=1 will change the controller to the 
traditional PID system with a moderate gain for the P.
(2) Integral time “I”
Integral action is used to eliminate offset. Larger values lead to slower action. 
Increase the integral time when temperature fluctuates regularly (system 
oscillating). Decrease it if the controller is taking too long to eliminate the 
temperature offset. When I =0, the system becomes a PD controller.
(3) Derivative time “D”
Derivative action can be used to minimize the temperature over-shoot by 
responding to its rate of change. The larger the number, the faster the action.

4.4.3 Control mode “At”

At=0 On/off control. It works like a mechanical thermostat. It is suitable for 
devices that do not like to be switched at high frequency, such as motor and 
valves. See 4.5.2 for details.
At=1 Gets the controller ready to start the Auto tuning process by pressing the 
A/M key.
At=2 Start auto tuning. The function is the same as starting auto tuning from 
front panel.
At=3 This configuration is automatically set after auto tuning is done. Auto 

4.5.2 On/off control mode 

It is necessary for inductive loads such as motors, compressors, or solenoid 

valves that do not like to take pulsed power. It works like a mechanical 
thermostat. When the temperature passes the set point, the heater (or 
cooler) will be turned off. When the temperature drops back to below the 
hysteresis band (Hy) the heater will turn on again. 

To use the On/off mode, set At=0. Then, set the Hy to the desired range 

based on control precision requirements. Smaller Hy values result in tighter 
temperature control, but also cause the on/off action to occur more 
frequently. 

PV

SV

SV-Hy

100

97

Relay On

When heating, At=0
If PV

(SV-Hy), relay on

If PV

(SV+Hy), relay off

(SV=100, Hy=3)

Figure 5. On/off control mode

SV+Hy

103

Summary of Contents for SYL-2342

Page 1: ...ontrol output Ramp soak option SYL 2342 Relay contact output No SYL 2352 SSR control output No SYL 2342P Relay contact output Yes SYL 2352P SSR control output Yes All the models listed in table 1 are 1 16 DIN size with dual alarm outputs Table 1 Controller models 3 Terminal Wiring Figure 1 Wiring diagram 3 1 Sensor connection Please refer to table 3 for the input sensor type Sn setting codes The i...

Page 2: ...t is not controlled by regulating amplitude of the voltage or current This is often referred as time proportional control e g If the cycle rate is set for 100 seconds a 60 output means controller will switch on the power for 60 seconds and off for 40 seconds 60 100 60 Almost all high power control systems use time proportional control because amplitude proportional control is too expensive and ine...

Page 3: ...120 t Cycle time 2 125 2 for SSR 20 for relay See 4 6 Sn Input type 0 37 0 K type TC See 4 7 dP Decimal point position 0 3 0 See 4 8 P SL Display low limit 1999 9999 C or F 100 P SH Display high limit 1999 9999 C or F 2500 Pb Input offset 1999 4000 1999 9999 C or F 0 0 See 4 10 OP A Output mode 0 2 0 See 4 11 OUTL Output low limit 0 110 0 OUTH Output high limit 0 110 100 AL P Alarm output definiti...

Page 4: ...At 1 or At 2 4 5 Control action explanations 4 5 1 PID Please note that because this controller uses fuzzy logic enhanced PID control software the definition of the control constants P I and d are different than that of the traditional proportional integral and derivative parameters In most cases the fuzzy logic enhanced PID control is very adaptive and may work well without changing the initial P...

Page 5: ...imum ALM1 Hy 1 and Hy 2 to 9999 ALM2 to 1999 to stop its function 4 14 COOL for Celsius Fahrenheit Heating and Cooling Selection Parameter COOL is used to set the display unit heating or cooling and alarm suppression Its value is determined by the following formula COOL AX1 BX2 CX8 A 0 reverse action control mode for heating control 4 5 3 Manual mode Manual mode allows the user to control the outp...

Page 6: ...cy within a fraction of a degree The SSR allows the heater to be switched at higher frequency for better stability It also has longer life time than the electromechanical relay A proper heat sink is needed when the SSR switches 8A of current For wiring a 240V heater please see 5 4 A 1 direct action control mode for cooling control B 0 without alarm suppressing when turned on or when set point chan...

Page 7: ...esis band for heater and cooler to 2 degree 2 COOL 9 Set the controller to cooling mode no alarm suppression Fahrenheit temperature unit display 3 AT 0 Set the controller main output to on off control mode for refrigerator compressor control 4 ALM2 62 Set the low limit alarm to 62 F Heater will be on at 60 F ALM2 Hy and off at 64 F ALM2 Hy 5 SV 67 Refrigerator will be on at 69 F SV Hy and off at 6...

Page 8: ...e parameter OUTL If this happens when using thermocouple sensor you can short terminal 4 and 5 with a copper wire If the display shows ambient temperature the thermocouple is defective If it still displays orAL check the input setting Sn to make sure it is set to the right thermocouple type If the Sn setting is correct the controller is defective For RTD sensors check the input setting first becau...

Reviews: