background image

 SYL-2342, SYL-2352 PID TEMPERATURE CONTROLLER 

INSTRUCTION MANUAL 

Version 4.4

AUBER INSTRUMENTS

WWW.AUBERINS.COM

2011.02

P1/8

Instruction Manual

1. Specification

Input type

Thermocouple(TC): K, E, S, N, J, T, B, WRe5/26
RTD(Resistance temperature detector): Pt100, Cu50
DC Voltage: 0~5V, 1~5V, 0~1V,
-100~100mV, -20~20mV, -5~5V, 0.2~1V.
DC current : 0~10mA, 1~20mA, 4~20mA. (use external
shunt resistor for higher current)

Input range

Please see section 4.7 for detail.

Accuracy

±0.2%  Full scale: RTD, linear voltage, linear current and
thermocouple input with ice point compensation or Cu50
copper compensation.
0.2% Full scale or ±2 ºC: thermocouple input with internal
automatic compensation.
Note: for thermocouple B, the measurement accuracy of ±
0.2%  can only be guaranteed when input range is between
600~1800 ºC.

Response time

 0.5s (when FILt=0)

Display resolution

1 °C, 1 °F; or 0.1 °C

Control mode

Fuzzy logic enhanced PID control
On-off control
Manual control

Output mode

Relay contact (NO): 250VAC/7A, 120V/10A, 24VDC/10A
SSR voltage output: 12VDC/30mA

Alarm output

Relay contact. 250VAC/1A, 120VAC/3A, 24V/3A

Alarm function

Process high alarm, process low alarm, deviation high
alarm, and deviation low alarm

Manual function

Automatic/Manual bumpless transfer

Power supply

85~260VAC/50~60Hz

Power consumption

5 Watt

Ambient temperature 0~50ºC, 32~122ºF
Dimension

48 x 48 x100 mm (WxHxD)

Mounting cutout

45 x 45 mm

2. Available Configurations 

Caution

This controller is intended to control equipment under normal operating 
conditions. If failure or malfunction of the controller may lead to abnormal 
operating conditions that may result in personal injury or damage to the 
equipment or other property, devices (limit or safety controls) or systems 
(alarm or supervisory) intended to warn of or protect against failure or 
malfunction of the controller must be incorporated into and maintained as 
part of the control system.
Installing the rubber gasket supplied will protect the controller front panel 
from dust and water splash (IP54 rating). Additional protection is needed  
for higher IP rating.
This controller carries a 90-day warranty. This warranty is limited to the 
controller only.

Model

Control output

Ramp/soak option

SYL-2342

Relay  contact output

No

SYL-2352

SSR control output

No

SYL-2342P

Relay  contact output

Yes

SYL-2352P

SSR control output

Yes

All the models listed in table 1 are 1/16 DIN size with dual-alarm outputs. 

Table 1. Controller models 

3. Terminal Wiring

Figure 1. Wiring diagram

3.1 Sensor connection

Please refer to table 3 for the input sensor type (Sn) setting codes. The initial 
setting for input is for a K type thermocouple. Set Sn to the right sensor code
if another sensor type is used.
3.1.1 Thermocouple
The thermocouple should be connected to terminals 4 and 5. Make sure that 
the polarity is correct. There are two commonly used color codes for the K 
type thermocouple. US color code uses yellow (positive) and red (negative). 
Imported DIN color code uses red (positive) and green/blue (negative). The 
temperature reading will decrease as temperature increases if the connection 
is reversed.
When using ungrounded thermocouple that is in touch with a large 
conductive subject, the electromagnetic field picked up by the sensor tip 
might be too large for the controller to handle, the temperature display will 
change erratically. In that case, connecting the shield of thermocouple to 
terminal 5 (circuit ground of the controller) might solve the problem. Another 
option is to connect the conductive subject to terminal 5. 
3.1.2 RTD sensor
For a three-wire RTD with standard DIN color code, the two red wires should 
be connected to the terminals 3 and 4. The white wire should be connected 
to terminal 5. For a two-wire RTD, the wires should be connected to terminals 
4 and 5. Jump a wire between terminals 3 and 4. Set controller input type, Sn 
to 21.
3.1.3 Linear input (V or mA) 
Voltage and mA current signal inputs should be connected between terminals 
2 and 5. Terminal 2 is positive.

3.2 Power to the controller

The power cables should be connected to terminals 9 and 10. Polarity does 
not matter. It can be powered by 85-260V AC power source. Neither a 
transformer nor jumper is needed to wire it up. For the sake of consistency 
with the wiring example described later, we suggest you connect the hot wire 
to terminal 9 and neutral to 10.

+

+

1
2
3

13 14 6

7
8
9

10

4
5

AL1 AL2

AC

85~260V

SSR

+

-

Model SYL-2352, SYL-2352P

RTD

R

R

W

TC

mA

V

-

+

+

1
2
3

13 14 6

7
8
9

10

4
5

RTD

R

R

W

TC

mA

V

AL1 AL2

AC

85~260V

Out

Model SYL-2342, SYL-2342P

+

-

+

Summary of Contents for SYL-2342

Page 1: ...ontrol output Ramp soak option SYL 2342 Relay contact output No SYL 2352 SSR control output No SYL 2342P Relay contact output Yes SYL 2352P SSR control output Yes All the models listed in table 1 are 1 16 DIN size with dual alarm outputs Table 1 Controller models 3 Terminal Wiring Figure 1 Wiring diagram 3 1 Sensor connection Please refer to table 3 for the input sensor type Sn setting codes The i...

Page 2: ...t is not controlled by regulating amplitude of the voltage or current This is often referred as time proportional control e g If the cycle rate is set for 100 seconds a 60 output means controller will switch on the power for 60 seconds and off for 40 seconds 60 100 60 Almost all high power control systems use time proportional control because amplitude proportional control is too expensive and ine...

Page 3: ...120 t Cycle time 2 125 2 for SSR 20 for relay See 4 6 Sn Input type 0 37 0 K type TC See 4 7 dP Decimal point position 0 3 0 See 4 8 P SL Display low limit 1999 9999 C or F 100 P SH Display high limit 1999 9999 C or F 2500 Pb Input offset 1999 4000 1999 9999 C or F 0 0 See 4 10 OP A Output mode 0 2 0 See 4 11 OUTL Output low limit 0 110 0 OUTH Output high limit 0 110 100 AL P Alarm output definiti...

Page 4: ...At 1 or At 2 4 5 Control action explanations 4 5 1 PID Please note that because this controller uses fuzzy logic enhanced PID control software the definition of the control constants P I and d are different than that of the traditional proportional integral and derivative parameters In most cases the fuzzy logic enhanced PID control is very adaptive and may work well without changing the initial P...

Page 5: ...imum ALM1 Hy 1 and Hy 2 to 9999 ALM2 to 1999 to stop its function 4 14 COOL for Celsius Fahrenheit Heating and Cooling Selection Parameter COOL is used to set the display unit heating or cooling and alarm suppression Its value is determined by the following formula COOL AX1 BX2 CX8 A 0 reverse action control mode for heating control 4 5 3 Manual mode Manual mode allows the user to control the outp...

Page 6: ...cy within a fraction of a degree The SSR allows the heater to be switched at higher frequency for better stability It also has longer life time than the electromechanical relay A proper heat sink is needed when the SSR switches 8A of current For wiring a 240V heater please see 5 4 A 1 direct action control mode for cooling control B 0 without alarm suppressing when turned on or when set point chan...

Page 7: ...esis band for heater and cooler to 2 degree 2 COOL 9 Set the controller to cooling mode no alarm suppression Fahrenheit temperature unit display 3 AT 0 Set the controller main output to on off control mode for refrigerator compressor control 4 ALM2 62 Set the low limit alarm to 62 F Heater will be on at 60 F ALM2 Hy and off at 64 F ALM2 Hy 5 SV 67 Refrigerator will be on at 69 F SV Hy and off at 6...

Page 8: ...e parameter OUTL If this happens when using thermocouple sensor you can short terminal 4 and 5 with a copper wire If the display shows ambient temperature the thermocouple is defective If it still displays orAL check the input setting Sn to make sure it is set to the right thermocouple type If the Sn setting is correct the controller is defective For RTD sensors check the input setting first becau...

Reviews: