background image

Example: 
4.12

3.58

6.4 = 21.1496

4.12

3.58

7.1 = 7.6496

[ON/AC] [4] [•] [1] [2] [

]

[3] [•] [5] [8] [

] [6] [•] [4] [=]

[

3

]

[

3

] [

3

] [

3

] [

3

]

[

] [7] [•] [1]

[=]

The replay function is not cleared even when [ON/AC] is 
pressed or when power is turned OFF, so contents can be 
recalled even after [ON/AC] is pressed.
 
Replay  function  is  cleared  when  mode  or  operation  is 
switched.

Error Position Display Function
When  an  ERROR  message  appears  during  operation 
execution,  the  error  can  be  cleared  by  pressing  the 
[ON/AC] key, and the values or formula can be re-entered 
from the beginning.  However, by pressing the [

3

] or [

4

key, the ERROR message is cancelled and the cursor moves 
to the point where the error was generated.

Example:  14

0

2.3 is input by mistake

[ON/AC] [1] [4] [

] [0] [

]

[2] [.] [3] [=]

[

3

] (or [

4

] )

Correct the input by pressing
[

3

] [SHIFT] [INS] [1]

[=]

Scientific Function

Trigonometric  functions  and  inverse  trigonometric 
functions
•  Be  sure  to  set  the  unit  of  angular  measurement  before 

performing  trigonometric    function  and  inverse 
trigonometric function calculations.

•  The  unit  of  angular  measurement  (degrees,  radians, 

grads) is selected in sub-menu.

• Once a unit of angular measurement is set, it remains in 

effect  until  a  new  unit  is  set.    Settings  are  not  cleared 
when power is switched OFF.

Performing Hyperbolic and Inverse Hyperbolic Functions

Logarithmic and Exponential Functions

Coordinate Transformation
•  This  scientific  calculator  lets  you  convert  between 

rectangular coordinates and polar coordinates, i.e., P(x, y) 

 P(r, 

)

•  Calculation results are stored in variable memory E and 

variable memory F.  Contents of variable memory E are 
displayed  initially.    To  display  contents  of  memory  F, 
press [RCL] [F].

•  With  polar  coordinates, 

  can  be  calculated  within  a 

range of –180º< 

180º.

(Calculated range is the same with radians or grads.)

Permutation and Combination
Total number of permutations nPr = n!/(n

r)!

Total number of combinations nCr = n!/(r!(n

r)!)

Other Functions (

 , x

2

, x

–1

, x!, 

3

, Ran#)

Fractions
Fractions  are  input  and  displayed  in  the  order  of  integer, 
numerator  and  denominator.  Values  are  automatically 
displayed in decimal format whenever the total number of 
digits  of  a  fractional  value  (interger  +  numerator  + 
denom separator marks) exceeds 10.

Degree, Radian, Gradient Interconversion
Degree,  radian  and  gradient  can  be  converted  to  each 
other  with  the  use  of  [SHIFT][DRG>].    Once  [SHIFT] 
[DRG>]
 have been keyed in,  the "DRG" selection menu 
will be shown as follows.

Degrees, Minutes, Seconds Calculations 
You  can  perform  sexagesimal  calculations  using  degrees 
(hours),  minutes  and  seconds.  And  convert  between 
sexagesimal and decimal values.

Statistical Calculations
This  unit  can  be  used  to  make  statistical  calculations 
including  standard  deviation  in  the  "SD"  mode,  and 
regression calculation in the "REG" mode.

Standard Deviation
In the "SD" mode, calculations including 2 types of 
standard deviation formulas, mean, number of data, sum 
of data, and sum of square can be performed.

Data input
1. Press [MODE] [2] to specify SD mode.
2. Press [SHIFT] [Scl] [=]  to clear the statistical memories.
3. Input data, pressing [DT] key (= [M+]) each time a new 

piece of data is entered. 

Example  Data: 10, 20, 30
Key operation: 10 [DT] 20 [DT] 30 [DT] 
•  When multiples of the same data are input, two different 

entry methods are possible.
Example 1    Data: 10, 20, 20, 30
Key operation: 10 [DT] 20 [DT] [DT] 30 [DT] 
The previously entered data is entered again each time 
the DT is pressed without entering data (in this case 20 
is re-entered).
Example 2     Data: 10, 20, 20, 20, 20, 20, 20, 30
Key operation: 10 [DT] 20 [SHIFT] [;] 6 [DT] 30 [DT]

By  pressing  [SHIFT]  and  then  entering  a  semicolon 
followed by value that represents the number of items the 
data  is  repeated  (6,  in  this  case)  and  the  [DT]  key,  the 
multiple  data  entries  (for  20,  in  this  case)  are  made 
automatically.

Deleting input data
There are various ways to delete value data, depending on 
how and where it was entered.

Example 1  40 [DT] 20 [DT] 30 [DT] 50 [DT]
  To delete 50, press [SHIFT] [CL].
Example 2  40 [DT] 20 [DT] 30 [DT] 50 [DT]
  To delete 20, press 20 [SHIFT] [CL].
Example 3  30 [DT] 50 [DT] 120 [SHIFT] [;] 
  To delete 120 [SHIFT] [;] , press [ON/AC].
Example 4  30 [DT] 50 [DT] 120 [SHIFT] [;] 31
  To delete 120 [SHIFT] [;] 31, press [AC].

Example 5  30 [DT] 50 [DT] 120 [SHIFT] [;]  31 [DT]
  To delete 120 [SHIFT] [;] 31 [DT], press [SHIFT] [CL].
Example 6  50 [DT] 120 [SHIFT] [;] 31 [DT] 40 [DT] 30 [DT]
  To delete 120 [SHIFT] [;] 31 [DT], press 120 [SHIFT] [;] 31
  [SHIFT] [CL].
Example 7  [

10 [DT] [

] 20 [DT] [

] 30 [DT]

  To delete [

] 20 [DT], press [

] 20 [=] [Ans] [SHIFT] [CL]

Example 8  [

10 [DT] [

] 20 [DT] [

] 30 [DT]

  To delete [

] 20 [DT], press [

] 20 [SHIFT] [;] [(–)] 1 [DT].

Performing calculations
The following procedures are used to perform the various 
standard deviation calculations.

Standard deviation and mean calculations are performed 
as shown below:
Population standard deviation 

σ

n

 = 

(

(

x

i

x

)

2

/

n

)

where 

i

 = 1 to 

n

Sample standard deviation 

σ

n–1

 = 

(

(

x

i

x

)

2

/(

n

-

1

))

where 

i

 = 1 to 

n

Mean 

x

 = (

x

)/

n

Regression Calculation
In the REG mode, calculations including linear regression, 
logarithmic  regression,  exponential  regression,  power 
regression,  inverse  regression  and  quadratic  regression 
can be performed.

Press [MODE] [3] to enter the "REG" mode:

and then select one of the following regression types:-

Lin: linear regression
Log: logarithmic regression
Exp: exponential regression

press [

4

] for the other three regression types:-

Pwr: power regression
Inv: inverse regression
Quad: quadratic regression

Linear regression
Linear  regression  calculations  are  carried  out  using  the 
following formula:
      y = A + Bx.

Data input 
Press  [MODE]  [3]  [1]    to  specify  linear  regression  under 
the "REG" mode.
Press [Shift] [Scl] [=] to clear the statistical memories.
Input  data  in  the  following  format:  <x  data>  [,]  <y  data> 
[DT]
• When multiples of the same data are input, two different 

entry methods are possible:

Example 1  Data: 10/20, 20/30, 20/30, 40/50
Key operation:  10 [,]  20 [DT]
 

20 [,]  30 [DT] [DT]

 

40 [,]  50 [DT]

The previously entered data is entered again each time 
the [DT] key is pressed (in this case 20/30 is re-entered).

Example 2 Data: 10/20, 20/30, 20/30, 20/30, 20/30, 20/30, 
40/50
Key operation:  10 [,]  20 [DT]
 

20 [,]  30 [SHIFT] [;] 5 [DT]

 

40 [,]  50 [DT]

By  pressing  [SHIFT]  and  then  entering  a  semicolon 
followed by a value that represents the number of times 
the data is repeated (5, in this case) and the [DT] key, the 
multiple  data  entries  (for  20/30,  in  this  case)  are  made 
automatically.

Deleting input data
There are various ways to delete value data, depending on 
how and where it was entered.

Example 1 

10 [,]  40 [DT]

 

20 [,]  20 [DT]

 

30 [,]  30 [DT]

 

40 [,]  50

To delete 40 [,] 50, press [ON/AC]

Example 2 

10 [,]  40 [DT]

 

20 [,]  20 [DT]

 

30 [,]  30 [DT]

 

40 [,]  50 [DT] 

To delete 40 [,] 50 [DT], press [SHIFT][CL]

Example 3
To delete 20 [,] 20 [DT], press 20 [,] 20 [SHIFT][CL]

Example 4 

[

] 10 [,] 40 [DT]

 

[

] 40 [,] 50 [DT]

To delete[

]10[,]40[DT],

press [

]10[=][Ans][,]40[SHIFT][CL]

Key Operations to recall regression calculation results 

Performing calculations
The following procedures are used to perform the various 
linear regression calculations.

The regression formula is y = A + B

x

. The constant term of 

regression  A,  regression  coefficient  B,  correlation 

r

estimated  value  of 

x

,  and  estimated  value  of 

y

  are 

calculated as shown below:

A = ( 

y

x

 )/

n

B = ( 

n

xy

x

y

 ) / ( 

n

x

2

(

x

 )

2

)

r

 = ( 

n

xy

x

y

 ) / 

 (( 

n

x

2

(

x

 )

2

)( 

n

y

2

(

y

 )

2

))

y

 = A + B

x

x

 = ( 

y

A) / B

Logarithmic regression
Logarithmic regression calculations are carried out using 
the following formula: 
   

y

 = A + B•ln

x

Data input
Press [MODE] [3] [2]  to specify logarithmic regression 
under "REG" mode.
Press [SHIFT] [Scl] [=]  to clear the statistical memories.
Input data in the following format: <x data>, <y data> 
[DT] 
•  To  make  multiple  entries  of  the  same  data,  follow 

procedures described for linear regression.

Deleting input data
To delete input data, follow the procedures described for 
linear regression.

Performing calculations
The logarithmic regression formula 

y

 = A + B•ln

x

.  As 

x

 is 

input, In(

x

) will be stored instead of 

x

 itself.  Hence, we can 

treat  the  logarithmic  regression  formula  same  as  the 
linear  regression  formula.    Therefore,  the  formulas  for 
constant  term  A,  regression  coefficient  B  and  correlation 
coefficient  r  are  identical  for  logarithmic  and  linear 
regression.

A  number  of  logarithmic  regression  calculation  results 
differ from those produced by linear regression. Note the 
following:

Exponential regression
Exponential regression calculations are carried out using 
the following formula:
 

y

 = A•

e

B•x

 (ln 

y

 = ln A +

Bx

)

Data input
Press [MODE] [3] [3] to specify exponential regression 
under the "REG" mode.
Press [SHIFT] [Scl] [=]  to clear the statistical memories.
Input data in the following format: <x data>,<y data> [DT] 
•  To  make  multiple  entries  of  the  same  data,  follow 

procedures described for linear regression.

Deleting input data
To delete input data, follow the procedures described for 
linear regression.

Performing calculations
If  we  assume  that  ln

y

  = 

y

  and  lnA  =  a',  the  exponential 

regression  formula 

y

  =  A•

e

B•x

  (ln 

y

  =  ln  A  +

Bx

)  becomes 

the  linear  regression  formula  y  =a'  +  bx  if  we  store  In(

y

instead  of 

y

  itself.    Therefore,  the  formulas  for  constant 

term A, regression coefficient B and correlation coefficient 

r

 are identical for exponential and linear regression.

A number of exponential regression calculation results 
differ from those produced by linear regression. Note the 
following:

Power regression
Power regression calculations are carried out using the 
following formula:
   

y

 = A•

x

B

 (ln

y

 = lnA + Bln

x

)

Data input
Press [MODE] [3] [

4

] [1] to specify "power regression".

Press [SHIFT] [Scl] [=]  to clear the statistical memories.
Input data in the following format: <x data>,<y data> [DT] 
•  To  make  multiple  entries  of  the  same  data,  follow 

procedures described for linear regression.

Deleting input data
To delete input data, follow the procedures described for 
linear regression

Performing calculations
If we assume that ln

y

 = 

y

, lnA =a' and ln 

x

 = 

x

, the power 

regression  formula   

y

  =  A•

x

B

  (ln

y

  =  lnA  +  Bln

x

)  becomes 

the linear regression formula 

y

 = a' + b

x

 if we store In(

x

and  In(

y

)  instead  of 

x

  and 

y

  themselves.  Therefore,  the 

formulas for constant term A, regression coefficient B and 
correlation coefficient 

r

 are identical the power and linear 

regression.
A  number  of  power  regression  calculation  results  differ 
from  those  produced  by  linear  regression.  Note  the 
following:

Inverse regression
Power  regression  calculations  are  carried  out  using  the 
following formula:
   

y

 = A + ( B/

x

 )

Data input
Press [MODE] [3] [

4

] [2] to specify "inverse regression".

Press [SHIFT] [Scl] [=] to clear the statistical memories.
Input data in the following format: <x data>,<y data> [DT] 
•  To  make  multiple  entries  of  the  same  data,  follow 

procedures described for linear regression.

Deleting input data
To delete input data, follow the procedures described for 
linear regression

Performing calculations
If  1/

x

  is  stored  instead  of 

x

  itself,    the  inverse  regression 

formula 

y

  =  A  +  (  B/

x

  )  becomes  the  linear  regression 

formula 

y

  =  a  +  b

x

. Therefore,  the  formulas  for  constant 

term A, regression coefficient B and correlation coefficient 

r

 are identical the power and linear regression.

A  number  of  inverse  regression  calculation  results  differ 
from  those  produced  by  linear  regression.  Note  the 
following:

Quadratic Regression
Quadratic regression calculations are carried out using the 
following formula:
   y = A + B

x

 + C

x

2

 

Data input
Press [MODE] [3] [

4

] [3]  to specify quadratic regression 

under the "REG" mode.
Press [SHIFT] [Scl] [=] to clear the statistical memories.
Input data in this format: <x data>,<y data> [DT] 
•  To  make  multiple  entries  of  the  same  data,  follow 

procedures described for linear regression.

Deleting input data
To delete input data, follow the procedures described for 
linear regression.

Performing calculations
The following procedures are used to perform the various 
linear regression calculations.
The regression formula is y = A + B

x

 + C

x

2

 where A, B, C are 

regression coefficients. 
C = [(

n

x

2

(

x

)

2

) (

n

x

2

y

x

2

y

 )

(

n

x

3

x

2

x

) (

n

xy

 

x

y

)]

[(

n

x

2

(

x

)

2

) (

n

x

4

(

x

2

)

2

)

(

n

x

3

x

2

x

)

2

]

B = [

n

xy

x

y

C (

n

x

3

x

2

x

)]

(

n

x

2

(

x

)

2

)

A = (

y

B

x

C

x

2

) / n

To  read  the  value  of 

x

3

x

4

  or 

x

2

y

,  you  can  recall 

memory [RCL] M, Y and X respectively.

Replacing the Battery
Dim figures on the display of the calculator indicate that 
battery  power  is  low.  Continued  use  of  the  calculator 
when the battery is low can result in improper operation. 
Replace  the  battery  as  soon  as  possible  when  display 
figures become dim.

To replace the battery:-
• Remove the screws that hold the back cover in place and 

then remove the back cover,

• Remove the old battery,
• Wipe off the side of the new battery with a dry, soft cloth. 

Load it into the unit with the po) side facing up.

• Replace the battery cover and secure it in place with the 

screws.

• Press [ON/AC] to turn power on.

Auto Power Off
Calculator  power  automatically  turns  off  if  you  do  not 
perform  any  operation  for  about  six  minutes. When  this 
happens, press [ON/AC] to turn power back on.

Specifications
Power supply:  AG13 x 2 batteries
Operating temperature: 0º ~ 40ºC (32ºF ~ 104ºF)

– 20 –

– 24 –

– 28 –

– 32 –

– 36 –

– 21 –

– 25 –

– 29 –

– 33 –

– 37 –

– 22 –

– 26 –

– 30 –

– 34 –

– 38 –

– 23 –

– 27 –

– 31 –

– 35 –

 

 

Display

Example 

Operation 

(Lower)

sin 63º52'41"
= 0.897859012

cos (

π

/3 rad) = 0.5

tan (–35 grad)
= –0.612800788

2sin45º

cos65º

= 0.597672477
sin

–1

 0.5 = 30

cos

–1

 (

2/2)

= 0.785398163 rad

π

/4 rad

tan

–1

 0.741

= 36.53844577º
= 36º32' 18.4"
If the total number of digits for degrees/minutes/seconds exceed
11 digits, the higher order values are given display priority, and
any lower-order values are not displayed.  However, the entire
value is stored within the unit as a decimal value.
2.5

(sin

–1

0.8

cos

–1

0.9)

= 68º13'13.53"

[MODE][MODE][1]

("DEG" selected)

[sin] 63 [º ' "] 52 [º ' "]
41 [º ' "][=]
[MODE][MODE][2]

("RAD" selected)

[cos][(] [SHIFT][

π

][

]3 

[)] [=]
[MODE][MODE][3]

("GRA" selected)

[tan] [(–)] 35 [=]
[MODE][MODE][1]

("DEG")

2[sin] 45 [cos] 65 [=]
[SHIFT][sin

–1

] 0.5 [=]

[MODE][MODE][2]

("RAD")

[SHIFT][cos

–1

][(][

]2 [

]2

[)][=]
[

][SHIFT][

π

][=]

[MODE][MODE][1]

("DEG")

[SHIFT][tan

–1

]0.741[=]

[SHIFT] [

º' "]

 
2.5[

] [(] [SHIFT] [sin

–1

]0.8

[

] [SHIFT] [cos

–1

] 0.9 [)]

[=] [SHIFT] [

º' "]

0.897859012

0.5

–0.612800788

      0.597672477

30.

 
 

0.785398163

0.25

36.53844576

36º32º18.4º

68º13º13.53º

4.12x3.58+6.

21.1496

D

4.12x3.58–7.

7.6496

D

Ma ERROR

12x3.58+6.4_

21.1496

D

12x3.58–7.1_

21.1496

D

14

÷

10x2.3

0.

D

14

÷

10x2.3

3.22

D

 

 

Display

Example 

Operation 

(Lower)

log1.23
= 8.9905111

10

–2

In90 = 4.49980967
log456

In456

= 0.434294481
10

1.23

 = 16.98243652

e

4.5

 = 90.0171313

10

• e

–4

1.2 • 10

2.3

= 422.5878667

(–3)

4

 = 81

–3

= –81

5.6

2.3 

= 52.58143837

7

123 = 1.988647795

(78

23)

–12

= 1.305111829

10

–21

2

3

3

64

4 = 10

2

3.4

(5+6.7)

 = 3306232

[log] 1.23 [=] 

[In] 90 [=]
[log]456

[In]456 [=] 

[SHIFT][10

x

] 1.23 [=]

[SHIFT][e

x

]4.5[=]

[SHIFT][10

x

]4[

][SHIFT][e

x

]

[(–)]4[

]1.2[

][SHIFT][10

x

]

2.3[=]
[(][(–)] 3 [)] [x

y

] 4 [=]

[(–)] 3 [x

y

] 4 [=]

5.6 [x

y

] 2.3 [=]

7 [SHIFT][

x

] 123 [=]

[(]78[

]23[)][x

y

][(–)]12[=]

2[

]3[

]3[SHIFT][

x

]64

[

]4[=]

2[

]3.4[x

y

][(]5[

]6.7[)][=]

0.089905111

4.49980967

0.434294481

      16.98243652

90.0171313

 
 

422.5878667

81.

–81.

52.58143837
1.988647795

1.305111829

–21

10.

3306232.001

 

 

Display

Example 

Operation 

(Lower)

sinh3.6= 18.28545536
cosh1.23 = 1.856761057
tanh2.5= 0.986614298
cosh1.5

sinh1.5

= 0.22313016
sinh

–1

 30 = 4.094622224

cosh

–1

 (20/15)

= 0.795365461
x = (tanh

–1

 0.88) / 4

= 0.343941914
sinh

–1 

2

cosh

–1

1.5

= 1.389388923
sinh

–1 

(2/3)

tanh

–1

(4/5)

= 1.723757406

[hyp][sin] 3.6 [=] 
[hyp][cos] 1.23 [=]
[hyp][tan] 2.5 [=]
[hyp][cos] 1.5 [

][hyp]

[sin] 1.5 [=]
[hyp][SHIFT][sin

–1

] 30 [=]

[hyp][SHIFT][cos

–1

][(] 20

[

] 15 [)][=]

[hyp][SHIFT][tan

–1

]0.88

[

]4[=]

[hyp][SHIFT][sin

–1

]2[

]

[hyp][SHIFT][cos

–1

]1.5[=]

[hyp][SHIFT][sin

–1

][(]2[

]

3[)][

][hyp][SHIFT][tan

–1

]

[(]4[

]5[)][=]

18.28545536
1.856761057
0.986614298

0.22313016

4.094622224

0.795365461

0.343941914

1.389388923

1.723757406

 

 

Display

Example 

Operation 

(Lower)

x=14 and y=20.7, what
are r and 

º?

x=7.5 and y=–10, what
are r and 

 

rad?

r=25 and 

= 56º, what

are x and y?

r=4.5 and =2

π

/3 rad,

what are x and y?

[MODE][MODE][1]

("DEG" selected)

 

[Pol(]14 [,]20.7[)][=]
[RCL][F]
[SHIFT][

º' "]

[MODE][MODE][2]

("RAD" selected)

 

[Pol(]7.5[,][(–)]10[)][=]
[RCL][F]
[MODE][MODE][1]

("DEG" selected)

 

[SHIFT][Rec(]25 [,]56[)][=]
[RCL][F]
[MODE][MODE][2]

("RAD" selected)

[SHIFT][Rec(]4.5[,][(]2[

]

3[

][SHIFT][

π

][)][)][=]

[RCL][F]

24.98979792(r)

55.92839019(

)

55º55º42.2(

)

12.5(r)

–0.927295218(

)

13.97982259(x)
20.72593931(y)

–2.25(x)

3.897114317(y)

Example 

Operation 

Display

Define degree first
Change 20 radian to
degree
To perform the following
calculation :-
10 25.5 gradients
The answer is expressed
in degree. 

[MODE][MODE][1]

("DEG" selected)

 

20[SHIFT][DRG>][2][=]

10[SHIFT][DRG>][2]
[

]25.5[SHIFT][DRG>][3]

[=]

20

r

                     

1145.91559

10

r

25.5

g

       

595.9077951

Example 

Operation 

Display

To express 2.258 degrees
in deg/min/sec.
To perform the calculation:
12º34'56"

3.45

2.258[º' "][=]

12[º' "]34[º' "]56[º' "][

]

3.45[=]

2º15º28.8

43º24º31.2

 

 

Display

Example 

Operation 

(Lower)

Taking any four out of
ten items and arranging
them in a row, how many
different arrangements
are possible?

10

P

4

 = 5040

10[SHIFT][nPr]4[=]

5040.

 

 

Display

Example 

Operation 

(Lower)

Using any four numbers
from 1 to 7, how many
four digit even numbers
can be formed if none of
the four digits consist of
the same number?
(3/7 of the total number
of permutations will be
even.)

7

P

4

3

7 = 360

If any four items are
removed from a total
of 10 items, how many
different combinations
of four items are
possible?

10

C

4

 = 210

If 5 class officers are
being selected for a
class of 15 boys and
10 girls, how many
combinations are
possible? At least one
girl must be included
in each group. 

25

C

5

15

C

5

 = 50127

7[SHIFT][nPr]4[

]3[

]

7[=]

10[nCr]4[=]

25[nCr]5[

]15[nCr]5[=]

360.

210.

50127.

 

 

Display

Example 

Operation 

(Lower)

2

5 = 3.65028154

2

2

3

2

4

2

5

2

 = 54

(

3)

2

 

= 9

1/(1/3–1/4) = 12
8! = 40320

3

(36

42

49) = 42

Random number

generation (number is

in the range of 0.000 to

0.999)

[

]2[

][

]5[=]

2[x

2

][

]3[x

2

][

]4[x

2

]

[

]5[x

2

][=]

[(][(–)]3[)][x

2

][=]

[(]3[x

–1

][

]4[x

–1

][)][x

–1

][=]

8[SHIFT][x!][=]
[

3

][(]36[

]42[

]49[)][=]

[SHIFT][Ran#][=]

3.65028154

54.

9.

12.

40320.

42.

0.792

(random)

 

 

Display

Example 

Operation 

(Lower)

2

/

5

3

1

/

4

 = 3

13

/

20

3

456

/

78

 = 8

11

/

13

1

/

2578

1

/

4572

= 0.00060662

1

/

2

0.5 = 0.25

1

/

3

(–

4

/

5

)–

5

/

= –1

1

/

10

1

/

2

1

/

3

1

/

4

1

/

5

13

/

60

(

1

/

2

)/

1

/

6

1

/(

1

/

3

1

/

4

)

 

= 1

5

/

7

2[a

b

/

c

]5[

]3[a

b

/

c

]1

[a

b

/

c

]4[=]

[a

b

/

c

](conversion to decimal)

Fractions can be converted
to decimals, and then
converted back to fractions.
3[a

b

/

c

]456[a

b

/

c

]78[=]

[SHIFT][

d

/

c

]

1[a

b

/

c

]2578[

]1[a

b

/

c

]

4572[=]
When the total number
of characters, including
integer, numerator,
denominator and
delimiter mark exceeds
10, the input fraction is
automatically displayed
in decimal format.
1[a

b

/

c

]2[

].5[=]

1[a

b

/

c

]3[

][(–)]4[a

b

/

c

]5

[

]5[a

b

/

c

]6[=]

1[a

b

/

c

]2[

]1[a

b

/

c

]3[

]

1[a

b

/

c

]4[

]1[a

b

/

c

]5[=]

[(]1[a

b

/

c

]2[)][a

b

/

c

]3[=]

1[a

b

/

c

][(]1[a

b

/

c

]3[

]

1[a

b

/

c

]4[)][=]

3

13

20.

3.65

8

11

13.

115

13.

6.066202547

–04

0.25

–1

1

10.

13

60.

1

6.

1

5

7.

 

 

Display

Example 

Operation 

(Lower)

(1–sin

2

40)

= 0.766044443

1/2!

1/4!

1/6!

1/8!

= 0.543080357

[MODE][MODE][1]

("DEG" selected)

[

][(]1[

][(][sin]40[)][x

2

]

[)][=]
[SHIFT][cos

–1

][Ans][=]

2[SHIFT][x!][x

–1

][

]

4[SHIFT][x!][x

–1

][

]

6[SHIFT][x!][x

–1

][

]

8[SHIFT][x!][x

–1

][=]

0.766044443

40.

0.543080357

D  R  G

1  2  3

COMP SD REG

1    2   3

Key operation 

Result

[SHIFT][x

σ

n

]

[SHIFT][x

σ

n–1

]

[SHIFT][x]
[RCL][A]
[RCL][B]
[RCL][C]

Population standard deviation, 

x

σ

n

Sample standard deviation, 

x

σ

n–1

Mean, 

x

Sum of square of data, 

x

2

Sum of data, 

x

Number of data, 

n

Linear regression  Logarithmic regression

x

x

2

xy

In

x

(In

x

)

2

y

•In

x

Linear regression  Exponential regression

y

y

2

xy

In

y

(In

y

)

2

x

•In

y

Example 

Operation 

Display

Data 55, 54, 51, 55, 53, 
53, 54, 52

What is deviation of the
unbiased variance, and
the mean of the above
data?

[MODE][2] 

(SD Mode)

[SHIFT][Scl][=] 

(Memory cleared)

55[DT]54[DT]51[DT]
55[DT]53[DT][DT]54[DT]
52[DT]
[RCL][C]

(Number of data)

[RCL][B]

(Sumof data)

[RCL][A]

(Sum of square of data)

[SHIFT][x][=]

(Mean)

[SHIFT][x

σ

n

][=]

(Population SD)

[SHIFT][x

σ

n–1

][=]

(Sample SD)

[SHIFT][x

σ

n–1

]

[x

2

][=]

(Sample variance)

0.
0.

52.

8.

427.

22805.
53.375

1.316956719
1.407885953

1.982142857

Key operation 

Result

[SHIFT][A][=]
[SHIFT][B][=]
[SHIFT][C][=]
[SHIFT][r][=]
[SHIFT][x][=]
[SHIFT][y][=]
[SHIFT][y

σ

n

]

[SHIFT][y

σ

n–1

]

[SHIFT][y]
[SHIFT][x

σ

n

]

[SHIFT][x

σ

n–1

]

[SHIFT][x]
[RCL][A]
[RCL][B]
[RCL][C]
[RCL][D]
[RCL][E]
[RCL][F]

Constant term of regression A
Regression coefficient B
Regression coefficient C
Correlation coefficient 

r

Estimated value of 

x

Estimated value of 

y

Population standard deviation, 

y

σ

n

Sample standard deviation, 

y

σ

n–1

Mean, 

y

Population standard deviation, 

x

σ

n

Sample standard deviation, 

x

σ

n–1

Mean, 

x

Sum of square of data, 

x

2

Sum of data, 

x

Number of data, 

n

Sum of square of data, 

y

2

Sum of data, 

y

Sum of data, 

xy

Linear regression  Inverse regression

x

x

2

xy

(1/

x

)

(1/

x

)

2

(

y

/

x

)

Linear regression  Power regression

x

x

2

y

y

2

xy

In

x

(In

x

)

2

In

y

(In

y

)

2

In

x

•In

y

4.12x3.58+6.

21.1496

D

14

÷

0x2.3

0.

D

Lin Log Exp

1    2   3

Pwr Inv Quad

1    2    3

Example 

Operation 

Display

 

xi 

yi

  29 

1.6

  50 

23.5

  74 

38

  103 

46.4

  118 

48

Through power 
regression of the above
data, the regression
formula and correlation
coefficient are obtained.
Furthermore, the
regression formula is
used to obtain the
respective estimated
values of 

y

 and 

x

, when

xi

 = 16 and 

yi

 = 20.

[MODE][3][

4

][3]

("REG" then select Quad regression)
[SHIFT][Scl][=]
29[,]1.6[DT]
50[,]23.5[DT]
74[,]38[DT]
103[,]46.4[DT]
118[,]48[DT]
[SHIFT][A][=]

(Constant term A)

[SHIFT][B][=]

(Regression coefficient B)

[SHIFT][C][=]

(Regression coefficient C)

16[SHIFT][y]

(

y

 when 

xi

=16)

20[SHIFT][x]

(

x

1 when 

yi

=20)

[SHIFT][x]

(

x

2 when 

yi

=20)

0.

29.
50.
74.

103.
118.

–35.59856935

1.495939414

–6.716296671

–03

–13.38291067

47.14556728
175.5872105

Example 

Operation 

Display

 

xi 

yi

  2 

2

  3 

3

  4 

4

  5 

5

  6 

6

Through inverse
regression of the above
data, the regression
formula and correlation
coefficient are obtained.
Furthermore, the
regression formula is
used to obtain the
respective estimated
values of 

y

 and 

x

, when

xi

 = 10 and 

yi

 = 9.

[MODE][3][

4

][2]

("REG" then select Inv regression)
[SHIFT][Scl][=] 

(Memory cleared)

2[,]2[DT]
3[,]3[DT]
4[,]4[DT]
5[,]5[DT]
6[,]6[DT]
[SHIFT][A][=]

(Constant term A)

[SHIFT][B][=]

(Regression coefficient B)

[SHIFT][r][=]

(Correlation coefficient 

r

)

10[SHIFT][y]

(

y

 when 

xi

=10)

9[SHIFT][x]

(

x

 when 

yi

=9)

0.

0.
2.
3.
4.
5.
6.

7.272727272

–11.28526646

–0.950169098

6.144200627

–6.533575316

Example 

Operation 

Display

Temperature and length
of a steel bar
  Temp 

Length

  10ºC 

1003mm

  15ºC 

1005mm

  20ºC 

1010mm

  25ºC 

1011mm

  30ºC 

1014mm

Using this table, the
regression formula and
correlation coefficient
can be obtained. Based
on the coefficient
formula, the length of 
the steel bar at 18ºC
and the temperature
at 1000mm can be
estimated. Furthermore
the critical coefficient
(

r

2

) and covariance can

also be calculated.

[MODE][3][1]
("REG" then select linear regression)
[SHIFT][Scl][=] 

(Memory cleared)

10[,]1003[DT]
15[,]1005[DT]
20[,]1010[DT]
25[,]1011[DT]
30[,]1014[DT]
[SHIFT][A][=]

(Constant term A)

[SHIFT][B][=]

(Regression coefficient B)

[SHIFT][r][=]

(Correlation coefficient 

r

)

18[SHIFT][y]

(Length at 18ºC)

1000[SHIFT][x]

(Temp at 1000mm)

[SHIFT][r][x

2

][=]

(Critical coefficient)

[(][RCL][F][–][RCL][C][

]

[SHIFT][x][

][SHIFT][y][)][

]

[(][RCL][C][–]1[)][=]

(Covariance)

0.

0.

10.
15.
20.
25.
30.

997.4

0.56

0.982607368

1007.48

4.642857143
0.965517241

35.

Example 

Operation 

Display

 

xi 

yi

  29 

1.6

  50 

23.5

  74 

38

  103 

46.4

  118 

48.9

The logarithmic
regression of the above
data, the regression
formula and correlation
coefficient are obtained.
Furthermore, respective
estimated values y and

x

 can be obtained for

xi

 = 80 and 

yi

 = 73 using

the regression formula.

[MODE][3][2]
("REG" then select LOG regression)
[SHIFT][Scl][=] 

(Memory cleared)

29[,]1.6[DT]
50[,]23.5[DT]
74[,]38[DT]
103[,]46.4[DT]
118[,]48.9[DT]
[SHIFT][A][=]

(Constant term A)

[SHIFT][B][=]

(Regression coefficient B)

[SHIFT][r][=]

(Correlation coefficient 

r

)

80[SHIFT][y]

(

y

 when 

xi

=80)

73[SHIFT][x]

(

x

 when 

yi

=73)

0.

0.

29.
50.
74.

103.
118.

–111.1283975

34.02014748
0.994013946
37.94879482
224.1541314

Example 

Operation 

Display

 

xi 

yi

  6.9 

21.4

  12.9 

15.7

  19.8 

12.1

  26.7 

8.5

  35.1 

5.2

Through exponential
regression of the above
data, the regression
formula and correlation
coefficient are obtained.
Furthermore, the
regression formula is
used to obtain the
respective estimated
values of 

y

 and 

x

, when

xi

 = 16 and 

yi

 = 20.

[MODE][3][3]
("REG" then select Exp regression)
[SHIFT][Scl][=] 

(Memory cleared)

6.9[,]21.4[DT]
12.9[,]15.7[DT]
19.8[,]12.1[DT]
26.7[,]8.5[DT]
35.1[,]5.2[DT]
[SHIFT][A][=]

(Constant term A)

[SHIFT][B][=]

(Regression coefficient B)

[SHIFT][r][=]

(Correlation coefficient 

r

)

16[SHIFT][y]

(

y

 when 

xi

=16)

20[SHIFT][x]

(

x

 when 

yi

=20)

0.

0.

6.9

12.9
19.8
26.7
35.1

30.49758742

–0.049203708

–0.997247351

13.87915739
8.574868045

Example 

Operation 

Display

 

xi 

yi

  28 

2410

  30 

3033

  33 

3895

  35 

4491

  38 

5717

Through power
regression of the above
data, the regression
formula and correlation
coefficient are obtained.
Furthermore, the
regression formula is
used to obtain the
respective estimated
values of 

y

 and 

x

, when

xi

 = 40 and 

yi

 = 1000.

[MODE][3][

4

][1]

("REG" then select Pwr regression)
[SHIFT][Scl][=] 

(Memory cleared)

28[,]2410[DT]
30[,]3033[DT]
33[,]3895[DT]
35[,]4491[DT]
38[,]5717[DT]
[SHIFT][A][=]

(Constant term A)

[SHIFT][B][=]

(Regression coefficient B)

[SHIFT][r][=]

(Correlation coefficient 

r

)

40[SHIFT][y]

(

y

 when 

xi

=40)

1000[SHIFT][x]

(

x

 when 

yi

=1000)

0.

0.

28.
30.
33.
35.
38.

0.238801069
2.771866156

0.998906255

6587.674587
20.26225681

All manuals and user guides at all-guides.com

Reviews: