Analog Devices SSM2304 Series Manual Download Page 18

SSM2304 

 

 

Rev. 0 | Page 18 of 20 

GETTING STARTED 

To ensure proper operation, follow these steps:  

1.

 

Verify that the control switches are at the proper positions.  

2.

 

Put S1H, the shutdown control, in the lower position to 
turn on the amplifier. 

3.

 

Put S1G, the gain selection, in the upper position for 
higher gain and in the lower position for lower gain.  

4.

 

Connect the power supply with the right polarity and 
proper voltage.  

5.

 

Connect the loads to the proper output ports. Depending 
on the application, use nodes OUTBL+, OUTBL−, OUTBR+, 
and OUTBR− to connect the loads after the beads or use 
nodes OUTLL+, OUTLL−, OUTLR+, and OUTLR− to 
connect the loads after the inductors. 

WHAT TO TEST 

1.

 

EMI (electromagnetic interference). Connect wires for the 
speakers that are the length required for the application 
and perform the EMI test.  

2.

 

Signal-to-noise ratio.  

3.

 

Output noise. Use an A-weighting filter to filter the output 
before the measurement meter.   

4.

 

Maximum output power.  

5.

 

Efficiency. 

6.

 

Component selections. 

Selecting the correct components is the key for achieving the 
performance required at the cost budgeted.  

1.

 

Input coupling capacitor selection. Capacitors C1, C2, C3, 
and C4 should be large enough to couple the low frequency 
signal components in the incoming signal, but small enough 
to filter out unnecessary low frequency signals. For music 
signals, the cutoff frequency is often chosen between 20 Hz 
and 30 Hz. The cutoff frequency is calculated by 

C

 = 1/(2 

Rfc

where 

R

 is 150k, and 

fc

 is the cutoff frequency.  

2.

 

Input serial resistors (R1, R2, R3, and R4). These resistors 
are not necessary for the amplifier to operate and are only 
needed when special gain values are required. Using 
resistors of too high a value increases the input noise.  

3.

 

Output beads (B1, B2, B3, and B4). The output beads are 
necessary components for filtering out the EMIs caused at 
the switching output nodes. Ensure that these beads have 
enough current conducting capability while providing 
sufficient EMI attenuation. The current rating needed for 
an 8 Ω load is about 600 mA, and the impedance for 
100 MHz must be greater than 600 Ω. In addition, the 
lower the DCR (dc resistance) of these beads, the better for 
minimizing their power consumptions. The recommended 
bead is described in Table 6.  

4.

 

Output shunting capacitors for the beads. There are two 
groups of these capacitors: C11, C12, C13, and C14 and 
C23, C24, C25, and C26. The former is for filtering out the 
lower frequency EMIs (those up to 250 MHz), and the latter 
is for filtering out the higher frequency EMIs (those greater 
than 250 MHz). Use small size (0603 or 0402) multilayer 
ceramic capacitors of a X7R or COG (NPO) material. The 
higher the value of these capacitors, the lower the residual 
EMI level at the output and the higher the quiescent current 
at the power supply. It is recommend to use 500 pF to 1 nF 
values for the first group of capacitors and 100 pF to 200 pF 
for the second group of capacitors.  

5.

 

Output inductors. Some users do not allow high frequency 
EMIs in the system and prefer using inductors to filter the 
output of the high frequency components at the output nodes. 
Choose an inductance greater than 2.2 μH for these inductors. 
The higher the inductance, the lower the EMI at the output 
and the lower the quiescent current at the power supply. 
However, higher inductance also corresponds with higher 
power consumption by the inductors when the output power 
level is high. It is recommended to use 2.2 μH to 10 μH 
inductors; the current rating must be greater than 600 mA 
(saturation current) for an 8 Ω load. Table 7 describes the 
recommended inductors.  

 

Table 6. 

Part No. 

Manufacturer 

Z (Ω) 

I

MAX

 (mA) 

DCR (Ω) 

Size (mm) 

MPZ1608S601A 

TDK 

600 

1000 

0.15 

1.6 × 0.8 × 0.8 

 

Table 7. 

Part No. 

Manufacturer 

L (μH) 

I

MAX

 (mA) 

DCR (Ω) 

Size (mm) 

LQH32CN4R7M53 

Murata Manufacturing Co., Ltd. 

4.7 

650 

0.15 

3.2 × 2.5 × 1.55 

LQH32CN3R3M53 

Murata Manufacturing Co., Ltd. 

3.3 

710 

0.12 

3.2 × 2.5 × 1.55 

LQH32CN2R2M53 

Murata Manufacturing Co., Ltd. 

2.2 

790 

0.1 

3.2 × 2.5 × 1.55 

SD3118-100-R 

Cooper Bussmann, Inc. 

10 

900 

0.3 

3.1 × 3.1 × 1.8 

ELL4LM100M 

Panasonic Corporation 

10 

690 

0.18 

3.8 × 3.8 × 1.8 

LBC2518T2R2M 

Taiyo Yuden Co., Ltd. 

2.2 

630 

0.13 

2.5 × 1.8 × 2 

1033AS-4R7M 

Toko Inc. 

4.7 

680 

0.31 

3.8 × 3.8 × 1 

 

OBSOLETE

Summary of Contents for SSM2304 Series

Page 1: ...ving a 4 Ω load from a 5 0 V supply The SSM2304 features a high efficiency low noise modulation scheme It operates with 85 efficiency at 1 4 W into 8 Ω from a 5 0 V supply and has a signal to noise ratio SNR that is better than 98 dB PDM modulation is used to provide lower EMI radiated emissions compared with other Class D architectures The SSM2304 has a micropower shutdown mode with a typical shu...

Page 2: ...pical Performance Characteristics 6 Typical Application Circuits 12 Application Notes 13 Overview 13 Gain Selection 13 Pop and Click Suppression 13 EMI Noise 13 Layout 14 Input Capacitor Selection 14 Proper Power Supply Decoupling 14 Evaluation Board Information 15 Introduction 15 Board Description 15 Getting Started 18 What to Test 18 PCB Layout Guidelines 19 Outline Dimensions 20 Ordering Guide ...

Page 3: ...z VDD 3 6V 0 25 Input Common ModeVoltage Range VCM 1 0 VDD 1 V Common Mode Rejection Ratio CMRRGSM VCM 2 5 V 100 mV at 217 Hz 60 dB Channel Separation XTALK PO 100 mW f 1 kHz 78 dB Average Switching Frequency fSW 1 8 MHz Differential Output Offset Voltage VOOS 2 0 mV POWER SUPPLY Supply Voltage Range VDD Guaranteed from PSRR test 2 5 5 0 V Power Supply Rejection Ratio PSRR VDD 2 5 V to 5 0 V 70 85...

Page 4: ...se listed under Absolute Maximum Ratings may cause permanent damage to the device This is a stress rating only functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability THERMAL RESISTANCE θJA is specified f...

Page 5: ... Left Channel 2 OUTL Noninverting Output for Left Channel 3 SD Shutdown Input Active low digital input 4 INL Noninverting Input for Left Channel 5 INL Inverting Input for Left Channel 6 NC No Connect 7 NC No Connect 8 INR Inverting Input for Right Channel 9 INR Noninverting Input for Right Channel 10 NC No Connect 11 OUTR Noninverting Output for Right Channel 12 OUTR Inverting Output for Right Cha...

Page 6: ...UTPUT POWER W THD N 10 1 0 1 0 001 0 01 0 1 1 RL 4Ω 33µH GAIN 6dB VDD 2 5V VDD 3 6V VDD 5V 06162 021 Figure 5 THD N vs Output Power into 4 Ω AV 6 dB 100 0 001 0 01 0 00001 0 0000001 10 OUTPUT POWER W THD N 10 1 0 1 0 001 0 1 06162 004 VDD 5V VDD 2 5V RL 8Ω 33µH GAIN 6dB VDD 3 6V Figure 6 THD N vs Output Power into 8 Ω AV 6 dB 100 0 0001 20 20k FREQUENCY Hz THD N VDD 5V RL 8Ω 33µH GAIN 6dB 0 5W 0 2...

Page 7: ... 5W 10 1 0 1 0 01 0 001 100 1k 10k 06162 023 1W Figure 11 THD N vs Frequency VDD 3 6 V RL 4 Ω AV 6 dB 100 0 0001 20 20k FREQUENCY Hz THD N VDD 2 5V RL 4Ω 33µH GAIN 6dB 0 25W 0 125W 10 1 0 1 0 01 0 001 100 1k 10k 06162 024 0 5W Figure 12 THD N vs Frequency VDD 2 5 V RL 4 Ω AV 6 dB 100 0 0001 20 20k FREQUENCY Hz THD N VDD 5V RL 8Ω 33µH GAIN 18dB 0 5W 0 25W 10 1 0 1 0 01 0 001 100 1k 10k 06162 025 1W...

Page 8: ...33µH GAIN 18dB 0 5W 0 25W 10 1 0 1 0 01 0 001 100 1k 10k 06162 029 1W Figure 17 THD N vs Frequency VDD 3 6 V RL 4 Ω AV 18 dB 100 0 0001 20 20k FREQUENCY Hz THD N VDD 2 5V RL 4Ω 33µH GAIN 18dB 0 25W 0 125W 10 1 0 1 0 01 0 001 100 1k 10k 06162 041 0 5W Figure 18 THD N vs Frequency VDD 2 5 V RL 4 Ω AV 18 dB 9 0 2 5 5 5 SUPPLY VOLTAGE V SUPPLY CURRENT mA 8 7 6 5 4 3 2 1 3 0 3 5 4 0 4 5 5 0 06162 008 F...

Page 9: ...62 061 f 1kHz GAIN 18dB RL 8Ω 15µH Figure 23 Maximum Output Power vs Supply Voltage RL 8 Ω AV 18 dB 3 0 2 5 2 0 1 5 1 0 0 5 0 3 6 5 0 10 1 4 8 4 6 4 4 4 2 4 0 3 8 SUPPLY VOLTAGE V OUTPUT POWER W 06162 062 f 1kHz GAIN 18dB RL 4Ω 15µH Figure 24 Maximum Output Power vs Supply Voltage RL 4 Ω AV 18 dB 100 0 0 2 1 OUTPUT POWER W EFFICIENCY RL 4Ω 15µH 90 80 70 60 50 40 30 20 10 0 1 0 3 0 5 0 7 0 9 1 1 1 ...

Page 10: ... 2 06162 013 Figure 28 Power Dissipation vs Output Power at VDD 5 0 V RL 8 Ω 1 8 1 6 1 4 1 2 1 0 0 8 0 6 0 4 0 2 0 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1 0 1 1 1 2 OUTPUT POWER W POWER DISSIPATION W 06162 064 VDD 3 6V RL 4Ω 15µH Figure 29 Power Dissipation vs Output Power at VDD 3 6 V RL 4 Ω Figure 30 Power Dissipation vs Output Power at VDD 5 0 V RL 8 Ω 400 0 0 1 6 OUTPUT POWER W SUPPLY CURRENT ...

Page 11: ... 70 75 80 85 SD INPUT OUTPUT 06162 018 Figure 33 Common Mode Rejection Ratio vs Frequency Figure 35 Turn On Response 0 140 10 100k FREQUENCY Hz CROSSTALK dB 100 1k 10k 20 40 60 80 100 120 VDD 3 6V VRIPPLE 1V rms RL 8Ω 33µH 06162 017 7 2 20 180 TIME ms VOLTAGE 6 5 4 3 2 1 0 1 0 20 40 60 80 100 120 140 160 SD INPUT OUTPUT 06162 019 Figure 34 Crosstalk vs Frequency Figure 36 Turn Off Response O B S O...

Page 12: ... 2 22nF1 22nF1 22nF1 LEFT IN LEFT IN RIGHT IN RIGHT IN SSM2304 Rext Rext Rext Rext 0 1µF VBATT 2 5V TO 5 0V 10µF 06162 030 Figure 37 Stereo Differential Input Configuration FET DRIVER MODULATOR VDD VDD GND GND INTERNAL OSCILLATOR OUTR OUTR OUTL OUTL BIAS FET DRIVER MODULATOR INR INR SD SHUTDOWN INL INL 22nF 22nF 22nF 22nF LEFT IN RIGHT IN SSM2304 0 1µF VBATT 2 5V TO 5 0V 10µF 06162 031 Rext Rext R...

Page 13: ...o amplifiers can occur when shutdown is activated or deactivated Voltage transients as low as 10 mV can be heard as an audio pop in the speaker Clicks and pops can also be classified as undesirable audible transients generated by the amplifier system therefore as not coming from the system input signal Such transients can be generated when the amplifier system changes its operating mode For exampl...

Page 14: ...ital ground and power planes the analog ground plane should be underneath the analog power plane and similarly the digital ground plane should be underneath the digital power plane There should be no overlap between analog and digital ground planes nor analog and digital power planes INPUT CAPACITOR SELECTION The SSM2304 will not require input coupling capacitors if the input signal is biased from...

Page 15: ...two stereo loudspeakers The silkscreen layer of the evaluation board is shown in Figure 41 with other top layers including top copper top solder mask and multilayer vias Figure 42 shows the top silkscreen layer only There is no component in the bottom side therefore there is no bottom silkscreen layer Figure 43 shows the top layers without the silkscreen layer Figure 44 shows the bottom layers inc...

Page 16: ...r the SSM2304 S1H controls the shutdown function The upper position shuts down the amplifier and the lower position turns on the amplifier The upper right corner has a dc power jack connector The center pin is for the positive terminal It is compatible with 3 V to 5 V voltage and the maximum peak current is approximately 1 2 A when driving a 4 Ω load for SSM2304 only and 0 6 A when driving an 8 Ω ...

Page 17: ...EAD 1 2 B3 BEAD 1 2 C11 1nF 1 2 C12 1nF 1 2 C14 1nF 1 2 C13 1nF 1 2 L1 10uH 1 2 L2 10uH 1 2 L3 10uH 1 2 L4 10uH 1 2 C15 1uF 1 2 C16 1uF 1 2 C17 1uF 1 2 C18 1uF 1 2 3 3HD1 3P_HEADER 1 2 3 3HD2 3P_HEADER 1 2 C19 10uF 1 2 B5 BEAD 1 2 C20 10uF 2 1 4 3 6 5 8 7 10 9 TB1 10P_T_BLOCK 1 2 2HD1 2PINA 1 2 2HD2 2PINA 1 2 2HD3 2PINA 1 2 2HD4 2PINA 7 10 S1G 10PST 8 9 S1H 10PST 1 2 R8 100K 1 2 R7 100K VDD VDD 1 ...

Page 18: ...ng needed for an 8 Ω load is about 600 mA and the impedance for 100 MHz must be greater than 600 Ω In addition the lower the DCR dc resistance of these beads the better for minimizing their power consumptions The recommended bead is described in Table 6 4 Output shunting capacitors for the beads There are two groups of these capacitors C11 C12 C13 and C14 and C23 C24 C25 and C26 The former is for ...

Page 19: ...ip as possible and connect its ground terminal to the PCB ground area containing the power supply traces 6 Place B5 the bead for the power supply as close to the amplifier chip as possible keeping it on the same side of the PCB as the chip 7 The ferrite beads can block an EMI of up to 160 MHz in frequency To eliminate EMIs greater than the 160 MHz place a small capacitor such as 100 pF in parallel...

Page 20: ...N Figure 47 16 Lead Lead Frame Chip Scale Package LFCSP_VQ 3 mm 3 mm Body Very Thin Quad CP 16 3 Dimensions shown in millimeters ORDERING GUIDE Model Temperature Range Package Description Package Option Branding SSM2304CPZ REEL 40 C to 85 C 16 Lead Lead Frame Chip Scale Package LFCSP_VQ CP 16 3 A1F 1 SSM2304CPZ REEL7 40 C to 85 C 16 Lead Lead Frame Chip Scale Package LFCSP_VQ CP 16 3 A1F 1 SSM2304...

Reviews: