background image

EVAL-SSM2306-MINI 

 

 

Rev. 0 | Page 4 of 

8

 

PCB LAYOUT GUIDELINES 

Correct PCB layout is critical in application designs to prevent 
EMI from exceeding allowable limits and to ensure that the 
amplifier chip operates below the temperature limit. Follow 
these guidelines carefully when designing the PCB layout. 

1.

 

Place nine vias onto the thermal pad of the amplifier. The 
outer diameter of the vias should be 0.5 mm, and the inner 
diameter should be 0.33 mm. Use a PCB area of at least 
2 cm

2

 or an equivalent area on the back side of the PCB 

layer as the heat sink (see Figure 4 and Figure 5). If internal 
layers are available in the PCB, allocate an area as large as 
possible to the ground planes and connect these vias to the 
ground planes. 

2.

 

Place the EMI filtering beads (B1, B2, B3, and B4) as close 
to the amplifier chip as possible. 

3.

 

Place the decoupling capacitors for the beads (C5, C6, C7, 
and C8) as close to the amplifier chip as possible, and 
connect all their ground terminals together. 

4.

 

Place the first decoupling capacitor for the power supply 
(C9) as close to the amplifier chip as possible, and connect 
its ground terminal directly to the IC GND pins (Pin 13 
and Pin 16). 

5.

 

Place the other decoupling capacitor for the power supply 
(C10) as close to the amplifier chip as possible, and connect 
its ground terminal to the PCB ground area from which 
the power supply traces come. 

6.

 

Place the bead for the power supply (B5) as close to the 
amplifier chip as possible, and keep it on the same side of 
the PCB as the chip. 

 

7.

 

The ferrite beads can block EMI up to 160 MHz. To 
eliminate EMI higher than 160 MHz, place a low value, 
small size capacitor, such as a 100 pF, 0402 size capacitor,  
in parallel with the decoupling capacitors, C5, C6, C7, and 
C8. Place this small capacitor at least 20 mm away from the 
1 nF decoupling capacitor. Ideally, the ground terminals of 
these small capacitors should be connected to the ground 
terminals of the 1 nF decoupling capacitors or to the PCB 
traces, which are placed as close to the output loads (the 
loudspeakers) as possible. In this way, the PCB connecting 
trace between these two capacitors serves as an inductor 
for filtering out the high frequency component. 

8.

 

Ground the unconnected pins, Pin 6 and Pin 7. 

9.

 

Connect the GND pins, Pin 13 and Pin 16, to the thermal 
pad and place grounding vias, as shown in Figure 3 and 
Figure 4

10.

 

Use a solid polygon plane on the other side of the PCB for 
the area of the vias that are placed on the thermal pad of 
the chip. See Figure 4 or Figure 5. This polygon serves as 
both the EMI shielding ground plane and the heat sink for 
the SSM2306. 

11.

 

Keep the PCB traces of high EMI nodes on the same side of 
the PCB and as short as possible. The high EMI nodes on 
the SSM2306 are Pin 1, Pin 2, Pin 11, and Pin 12. 

The SSM2306 mini evaluation board works well only if these 
techniques are implemented in the PCB design to keep EMI and 
amplifier temperature low. 

 

Summary of Contents for EVAL-SSM2306-MINI

Page 1: ...er signal to the loudspeaker doubling the output voltage swing and eliminating the need for a large output coupling capacitor Another benefit of a full H bridge is an increase in the maximum output power by 4 when compared to a half bridge under the same load impedance These benefits are particularly useful for low voltage battery powered portable electronics where energy and space are limited The...

Page 2: ...tion Board Description 1 Revision History 2 Evaluation Board Hardware 3 Getting Started 3 What to Test 3 Component Selection 3 PCB Layout Guidelines 4 Evaluation Board Schematic and Artwork 5 Ordering Information 7 Ordering Guide 7 ESD Caution 7 REVISION HISTORY 7 08 Revision 0 Initial Version ...

Page 3: ... Use an A weighting filter to filter the output before the measurement meter Maximum output power Efficiency COMPONENT SELECTION Selecting the right components is the key to achieving the performance required at the budgeted cost Input Coupling Capacitors The input coupling capacitors C1 C2 C3 and C4 should be large enough to couple the low frequency signal components in the incoming signal and sm...

Page 4: ...pply traces come 6 Place the bead for the power supply B5 as close to the amplifier chip as possible and keep it on the same side of the PCB as the chip 7 The ferrite beads can block EMI up to 160 MHz To eliminate EMI higher than 160 MHz place a low value small size capacitor such as a 100 pF 0402 size capacitor in parallel with the decoupling capacitors C5 C6 C7 and C8 Place this small capacitor ...

Page 5: ...SM2306 1 2 C2 200nF 1 2 C1 200nF 1 2 C4 200nF 1 2 C3 200nF 1 2 B2 BEAD 1 2 B1 BEAD 1 2 B4 BEAD 1 2 B3 BEAD 1 2 C5 1nF 1 2 C6 1nF 1 2 C7 1nF 1 2 C8 1nF 1 2 C9 10µF 1 2 B5 BEAD 1 2 C10 10µF 1 2 R2 100kΩ 1 2 R1 100kΩ VDD VDD 1 INR 1 INR 1 INL 1 INL 1 OUTBR 1 OUTBL 1 OUTBL 1 GND 1 OUTBR 1 VDD 1 PGND VDD 1 2 LP2 1 2 LP1 1 GND 07577 003 Figure 3 Schematic of the SSM2306 Mini Evaluation Board ...

Page 6: ...INL OUTBL INR INR INL SSM2306 U1 OUTBR OUTBR OUTBL GND LP1 LP2 GND VDD PGND C1 B1 C5 C4 R2 C3 R1 C2 B5 C10 B3 C9 B4 C7 B2 C8 C6 07577 005 Figure 5 Bottom Layers of the Evaluation Board 07577 004 Figure 4 Top Layers of the Evaluation Board ...

Page 7: ...EVAL SSM2306 MINI Rev 0 Page 7 of 8 ORDERING INFORMATION ORDERING GUIDE Model Description SSM2306 MINI EVALZ1 Evaluation Board without DIP switch 1 Z RoHS Compliant Part ESD CAUTION ...

Page 8: ...EVAL SSM2306 MINI Rev 0 Page 8 of 8 NOTES 2008 Analog Devices Inc All rights reserved Trademarks and registered trademarks are the property of their respective owners EB07577 0 7 08 0 ...

Reviews: