background image

   

AD8221 

 

Rev. C | Page 21 of 24 

In this topology, an 

OP27

 sets the reference voltage of the 

AD8221. The output signal of the instrumentation amplifier is 
taken across the OUT pin and the REF pin. Two 1 kΩ resistors 
and a 499 Ω resistor attenuate the ±10 V signal to +4 V. An 
optional capacitor, C1, can serve as an antialiasing filter. An 
AD8022 is used to drive the ADC. 
This topology has five benefits. In addition to level-shifting and 
attenuation, very little noise is contributed to the system. Noise 
from R1 and R2 is common to both of the inputs of the ADC 
and is easily rejected. R5 adds a third of the dominant noise and 
therefore makes a negligible contribution to the noise of the 
system. The attenuator divides the noise from R3 and R4. Likewise, 
its noise contribution is negligible. The fourth benefit of this 
interface circuit is that the acquisition time of the AD8221 is 
reduced by a factor of 2. With the help of the OP27, the AD8221 
only needs to deliver one-half of the full swing; therefore, signals 
can settle more quickly. Lastly, the AD8022 settles quickly, 
which is helpful because the shorter the settling time, the  
more bits that can be resolved when the ADC acquires data. 
This configuration provides attenuation, a level-shift, and a 
convenient interface with a differential input ADC while 
maintaining performance. 

AC-COUPLED INSTRUMENTATION AMPLIFIER 

Measuring small signals that are in the noise or offset of the 
amplifier can be a challenge. Figure 52 shows a circuit that can 
improve the resolution of small ac signals. The large gain 

reduces the referred input noise of the amplifier to 8 nV/√Hz. 
Thus, smaller signals can be measured because the noise floor is 
lower. DC offsets that would have been gained by 100 are 
eliminated from the output of the AD8221 by the integrator 
feedback network.  
At low frequencies, the 

OP1177

 forces the output of the AD8221 to 

0 V. Once a signal exceeds f

HIGH-PASS

, the AD8221 outputs the 

amplified input signal. 

AD8221

OP1177

R

15.8k

Ÿ

+V

S

+IN

–IN

0.1µF

0.1µF

0.1µF

0.1µF

10µF

10µF

REF

C

1µF

–V

S

–V

S

+V

S

+V

S

–V

S

R

499

Ÿ

1

ʌ5&

f

HIGH-PASS

 =

0

3

1

4

9

-0

5

1

 

Figure 52. AC-Coupled Circuit 

 

Summary of Contents for AD8221AC-P7

Page 1: ...n amplifier that delivers the industry s highest CMRR over frequency in its class The CMRR of instrumentation amplifiers on the market today falls off at 200 Hz In contrast the AD8221 maintains a mini...

Page 2: ...rential Input ADC 20 AC Coupled Instrumentation Amplifier 21 Die Information 22 Outline Dimensions 23 Ordering Guide 24 REVISION HISTORY 3 11 Rev B to Rev C Added Pin Configuration and Function Descri...

Page 3: ...V p p G 100 to 1000 0 25 0 25 V p p Current Noise f 1 kHz 40 40 fA Hz f 0 1 Hz to 10 Hz 6 6 pA p p VOLTAGE OFFSET1 Input Offset VOSI VS 5 V to 15 V 60 25 V Over Temperature T 40 C to 85 C 86 45 V Ave...

Page 4: ...0 15 Gain Nonlinearity VOUT 10 V to 10 V G 1 to 10 RL 10 k 3 10 3 10 ppm G 100 RL 10 k 5 15 5 15 ppm G 1000 RL 10 k 10 40 10 40 ppm G 1 to 100 RL 2 k 10 95 10 95 ppm Gain vs Temperature G 1 3 10 2 5 p...

Page 5: ...1 80 dB G 10 90 dB G 100 100 dB G 1000 100 dB NOISE RTI noise eNI 2 eNO G 2 Voltage Noise 1 kHz Input Voltage Noise eNI VIN VIN VREF 0 8 nV Hz Output Voltage Noise eNO 75 nV Hz RTI f 0 1 Hz to 10 Hz G...

Page 6: ...Range 1 1000 V V Gain Error VOUT 10 V G 1 0 1 G 10 0 3 G 100 0 3 G 1000 0 3 Gain Nonlinearity VOUT 10 V to 10 V G 1 to 10 RL 10 k 5 15 ppm G 100 RL 10 k 7 20 ppm G 1000 RL 10 k 10 50 ppm G 1 to 100 R...

Page 7: ...ax TEMPERATURE RANGE Specified Performance 40 85 C Operating Range4 40 125 C 1 Total RTI VOS VOSI VOSO G 2 Does not include the effects of external resistor RG 3 One input grounded G 1 4 See Typical P...

Page 8: ...stics for expected operation from 85 C to 125 C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device This is a stress rating only functional operation of...

Page 9: ...Negative Input Terminal 2 RG Gain Setting Terminal Place resistor across the RG pins to set the gain G 1 49 4 k RG 3 RG Gain Setting Terminal Place resistor across the RG pins to set the gain G 1 49...

Page 10: ...000 2500 3000 UNITS 0 0 5 1 0 1 5 0 5 1 0 1 5 INPUT BIAS CURRENT nA 03149 005 Figure 6 Typical Distribution of Input Bias Current 0 500 1000 1500 2000 2500 3000 3500 UNITS 0 0 3 0 6 0 9 0 3 0 6 0 9 IN...

Page 11: ...re 12 Input Bias Current and Offset Current vs Temperature 20 40 60 80 100 120 POSITIVE PSRR dB 140 160 180 0 1 1 10 100 1k 10k 100k 1M FREQUENCY Hz 03149 012 GAIN 1 GAIN 10 GAIN 100 GAIN 1000 GAIN 10...

Page 12: ...IN 100 GAIN 10 GAIN 1 Figure 18 CMRR vs Frequency RTI 1 k Source Imbalance 100 80 60 40 20 0 20 40 60 80 100 CMR V V 40 20 0 20 40 60 80 100 120 140 TEMPERATURE C 03149 018 Figure 19 CMR vs Temperatur...

Page 13: ...rent G 1 10 8 6 4 2 0 2 4 6 8 10 VS 15V 03149 023 ERROR 1ppm DIV OUTPUT VOLTAGE V Figure 24 Gain Nonlinearity G 1 RL 10 k VS 15V 03149 024 10 8 6 4 2 0 2 4 6 8 10 ERROR 10ppm DIV OUTPUT VOLTAGE V Figu...

Page 14: ...100 1k 10k 03149 029 Figure 30 Current Noise Spectral Density vs Frequency 1s DIV 5pA DIV 03149 030 Figure 31 0 1 Hz to 10 Hz Current Noise 0 5 10 15 20 25 30 OUTPUT VOLTAGE V p p FREQUENCY Hz 1k 100k...

Page 15: ...rge Signal Pulse Response and Settling Time G 100 0 002 DIV 200 s DIV 83 s TO 0 01 112 s TO 0 001 5V DIV 03149 035 0 002 DIV Figure 36 Large Signal Pulse Response and Settling Time G 1000 0 002 DIV 4...

Page 16: ...k CL 100 pF SETTLING TIME s 0 10 5 15 OUTPUT VOLTAGE STEP SIZE V 5 0 10 15 20 03149 040 SETTLED TO 0 01 SETTLED TO 0 001 Figure 41 Settling Time vs Step Size G 1 SETTLING TIME s 1 100 10 1000 GAIN 1 1...

Page 17: ...B G 1 Using superbeta input transistors and an IB compensation scheme the AD8221 offers extremely high input impedance low IB low IB drift low IOS low input bias current noise and extremely low voltag...

Page 18: ...unity to disturbances such as line noise and its associated harmonics than do typical instrumentation amplifiers Typically these amplifiers have CMRR fall off at 200 Hz common mode filters are often u...

Page 19: ...IN LOAD REF 0 1 F 10 F 0 1 F 10 F VS VOUT 03149 046 Figure 47 Supply Decoupling REF and Output Referred to Local Ground INPUT BIAS CURRENT RETURN PATH The input bias current of the AD8221 must have a...

Page 20: ...et and high CMRR over frequency of the AD8221 make it an excellent candidate for bridge measurements As shown in Figure 50 the bridge can be directly connected to the inputs of the amplifier 5V 2 5V 0...

Page 21: ...ver one half of the full swing therefore signals can settle more quickly Lastly the AD8022 settles quickly which is helpful because the shorter the settling time the more bits that can be resolved whe...

Page 22: ...plications where RG is not required Pad 2A and Pad 2B must be bonded together as well as the Pad 3A and Pad 3B 03149 104 1 2A 2B 3A 3B 4 5 6 8 7 LOGO Figure 53 Bond Pad Diagram Table 7 Bond Pad Inform...

Page 23: ...IN MILLIMETERS INCH DIMENSIONS IN PARENTHESES ARE ROUNDED OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN COMPLIANT TO JEDEC STANDARDS MS 012 AA 012407 A 0 25...

Page 24: ...8 JLA AD8221ARMZ 40 C to 85 C 40 C to 125 C 8 Lead MSOP RM 8 JLA AD8221ARMZ R7 40 C to 85 C 40 C to 125 C 8 Lead MSOP 7 Tape and Reel RM 8 JLA AD8221ARMZ RL 40 C to 85 C 40 C to 125 C 8 Lead MSOP 13 T...

Reviews: