background image

 

Precision Instrumentation Amplifier 

   

AD8221 

 

 

Rev. C 

Information  furnished  by  Analog  Devices  is  believed  to  be  accurate  and  reliable.  However,  no 
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other 
rights of third parties that may result from its use. Specifications subject to change without notice. No 
license is granted by implication or otherwise under any patent or patent rights of Analog Devices. 
Trademarks and registered trademarks are the property of their respective owners. 

 

 
 
One  Technology  Way,  P.O.  Box  9106,  Norwood,  MA  02062-9106,  U.S.A. 
Tel: 781.329.4700 

www.analog.com

  

Fax: 781.461.3113  ©2003–2011 Analog Devices, Inc. All rights reserved. 

FEATURES 

Easy to use 
Available in space-saving MSOP 
Gain set with 1 external resistor (gain range 1 to 1000) 
Wide power supply range: ±2.3 V to ±18 V 
Temperature range for specified performance:  

−40°C to +85°C 

Operational up to 125°C

1

Excellent AC specifications 

 

80 dB minimum CMRR to 10 kHz (G = 1)  
825 kHz, –3 dB bandwidth (G = 1) 
2 V/µs slew rate 

Low noise 

8 nV/√Hz, @ 1 kHz, maximum input voltage noise  
0.25 µV p-p input noise (0.1 Hz to 10 Hz)  

High accuracy dc performance (AD8221BR) 

90 dB minimum CMRR (G = 1) 
25 µV maximum input offset voltage  
0.3 µV/°C maximum input offset drift 
0.4 nA maximum input bias current 

 

APPLICATIONS 

Weigh scales 
Industrial process controls 
Bridge amplifiers 
Precision data acquisition systems 
Medical instrumentation 
Strain gages 
Transducer interfaces 
 

GENERAL DESCRIPTION 

The AD8221 is a gain programmable, high performance 
instrumentation amplifier that delivers the industry’s highest 
CMRR over frequency in its class. The CMRR of instrumentation 
amplifiers on the market today falls off at 200 Hz. In contrast, 
the AD8221 maintains a minimum CMRR of 80 dB to 10 kHz 
for all grades at G = 1. High CMRR over frequency allows the 
AD8221 to reject wideband interference and line harmonics, 
greatly simplifying filter requirements. Possible applications 
include precision data acquisition, biomedical analysis, and 
aerospace instrumentation. 

CONNECTION DIAGRAM 

8

7

6

5

1

2

3

4

–IN

R

G

R

G

+V

S

V

OUT

REF

–V

S

+IN

TOP VIEW

AD8221

0

3

1

4

9

-0

0

1

 

Figure 1.  

40

50

60

70

80

90

C

MR

R

 (d

B

)

100

110

120

FREQUENCY (Hz)

100

10

1k

10k

100k

0

3

1

4

9

-0

0

2

AD8221

COMPETITOR 1

COMPETITOR 2

 

Figure 2. Typical CMRR vs. Frequency for G = 1 

 
Low voltage offset, low offset drift, low gain drift, high gain 
accuracy, and high CMRR make this part an excellent choice  
in applications that demand the best dc performance possible, 
such as bridge signal conditioning. 
Programmable gain affords the user design flexibility. A single 
resistor sets the gain from 1 to 1000. The AD8221 operates on 
both single and dual supplies and is well suited for applications 
where ±10 V input voltages are encountered. 
The AD8221 is available in a low cost 8-lead SOIC and 8-lead 
MSOP, both of which offer the industry’s best performance. The 
MSOP requires half the board space of the SOIC, making it ideal 
for multichannel or space-constrained applications. 
Performance is specified over the entire industrial temperature 
range of −40°C to +85°C for all grades. Furthermore, the AD8221 
is operational from −40°C to +125°C

1

 

1

 See Typical Performance Characteristics for expected operation from  

85°C to 125°C. 

 

Summary of Contents for AD8221AC-P7

Page 1: ...n amplifier that delivers the industry s highest CMRR over frequency in its class The CMRR of instrumentation amplifiers on the market today falls off at 200 Hz In contrast the AD8221 maintains a mini...

Page 2: ...rential Input ADC 20 AC Coupled Instrumentation Amplifier 21 Die Information 22 Outline Dimensions 23 Ordering Guide 24 REVISION HISTORY 3 11 Rev B to Rev C Added Pin Configuration and Function Descri...

Page 3: ...V p p G 100 to 1000 0 25 0 25 V p p Current Noise f 1 kHz 40 40 fA Hz f 0 1 Hz to 10 Hz 6 6 pA p p VOLTAGE OFFSET1 Input Offset VOSI VS 5 V to 15 V 60 25 V Over Temperature T 40 C to 85 C 86 45 V Ave...

Page 4: ...0 15 Gain Nonlinearity VOUT 10 V to 10 V G 1 to 10 RL 10 k 3 10 3 10 ppm G 100 RL 10 k 5 15 5 15 ppm G 1000 RL 10 k 10 40 10 40 ppm G 1 to 100 RL 2 k 10 95 10 95 ppm Gain vs Temperature G 1 3 10 2 5 p...

Page 5: ...1 80 dB G 10 90 dB G 100 100 dB G 1000 100 dB NOISE RTI noise eNI 2 eNO G 2 Voltage Noise 1 kHz Input Voltage Noise eNI VIN VIN VREF 0 8 nV Hz Output Voltage Noise eNO 75 nV Hz RTI f 0 1 Hz to 10 Hz G...

Page 6: ...Range 1 1000 V V Gain Error VOUT 10 V G 1 0 1 G 10 0 3 G 100 0 3 G 1000 0 3 Gain Nonlinearity VOUT 10 V to 10 V G 1 to 10 RL 10 k 5 15 ppm G 100 RL 10 k 7 20 ppm G 1000 RL 10 k 10 50 ppm G 1 to 100 R...

Page 7: ...ax TEMPERATURE RANGE Specified Performance 40 85 C Operating Range4 40 125 C 1 Total RTI VOS VOSI VOSO G 2 Does not include the effects of external resistor RG 3 One input grounded G 1 4 See Typical P...

Page 8: ...stics for expected operation from 85 C to 125 C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device This is a stress rating only functional operation of...

Page 9: ...Negative Input Terminal 2 RG Gain Setting Terminal Place resistor across the RG pins to set the gain G 1 49 4 k RG 3 RG Gain Setting Terminal Place resistor across the RG pins to set the gain G 1 49...

Page 10: ...000 2500 3000 UNITS 0 0 5 1 0 1 5 0 5 1 0 1 5 INPUT BIAS CURRENT nA 03149 005 Figure 6 Typical Distribution of Input Bias Current 0 500 1000 1500 2000 2500 3000 3500 UNITS 0 0 3 0 6 0 9 0 3 0 6 0 9 IN...

Page 11: ...re 12 Input Bias Current and Offset Current vs Temperature 20 40 60 80 100 120 POSITIVE PSRR dB 140 160 180 0 1 1 10 100 1k 10k 100k 1M FREQUENCY Hz 03149 012 GAIN 1 GAIN 10 GAIN 100 GAIN 1000 GAIN 10...

Page 12: ...IN 100 GAIN 10 GAIN 1 Figure 18 CMRR vs Frequency RTI 1 k Source Imbalance 100 80 60 40 20 0 20 40 60 80 100 CMR V V 40 20 0 20 40 60 80 100 120 140 TEMPERATURE C 03149 018 Figure 19 CMR vs Temperatur...

Page 13: ...rent G 1 10 8 6 4 2 0 2 4 6 8 10 VS 15V 03149 023 ERROR 1ppm DIV OUTPUT VOLTAGE V Figure 24 Gain Nonlinearity G 1 RL 10 k VS 15V 03149 024 10 8 6 4 2 0 2 4 6 8 10 ERROR 10ppm DIV OUTPUT VOLTAGE V Figu...

Page 14: ...100 1k 10k 03149 029 Figure 30 Current Noise Spectral Density vs Frequency 1s DIV 5pA DIV 03149 030 Figure 31 0 1 Hz to 10 Hz Current Noise 0 5 10 15 20 25 30 OUTPUT VOLTAGE V p p FREQUENCY Hz 1k 100k...

Page 15: ...rge Signal Pulse Response and Settling Time G 100 0 002 DIV 200 s DIV 83 s TO 0 01 112 s TO 0 001 5V DIV 03149 035 0 002 DIV Figure 36 Large Signal Pulse Response and Settling Time G 1000 0 002 DIV 4...

Page 16: ...k CL 100 pF SETTLING TIME s 0 10 5 15 OUTPUT VOLTAGE STEP SIZE V 5 0 10 15 20 03149 040 SETTLED TO 0 01 SETTLED TO 0 001 Figure 41 Settling Time vs Step Size G 1 SETTLING TIME s 1 100 10 1000 GAIN 1 1...

Page 17: ...B G 1 Using superbeta input transistors and an IB compensation scheme the AD8221 offers extremely high input impedance low IB low IB drift low IOS low input bias current noise and extremely low voltag...

Page 18: ...unity to disturbances such as line noise and its associated harmonics than do typical instrumentation amplifiers Typically these amplifiers have CMRR fall off at 200 Hz common mode filters are often u...

Page 19: ...IN LOAD REF 0 1 F 10 F 0 1 F 10 F VS VOUT 03149 046 Figure 47 Supply Decoupling REF and Output Referred to Local Ground INPUT BIAS CURRENT RETURN PATH The input bias current of the AD8221 must have a...

Page 20: ...et and high CMRR over frequency of the AD8221 make it an excellent candidate for bridge measurements As shown in Figure 50 the bridge can be directly connected to the inputs of the amplifier 5V 2 5V 0...

Page 21: ...ver one half of the full swing therefore signals can settle more quickly Lastly the AD8022 settles quickly which is helpful because the shorter the settling time the more bits that can be resolved whe...

Page 22: ...plications where RG is not required Pad 2A and Pad 2B must be bonded together as well as the Pad 3A and Pad 3B 03149 104 1 2A 2B 3A 3B 4 5 6 8 7 LOGO Figure 53 Bond Pad Diagram Table 7 Bond Pad Inform...

Page 23: ...IN MILLIMETERS INCH DIMENSIONS IN PARENTHESES ARE ROUNDED OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN COMPLIANT TO JEDEC STANDARDS MS 012 AA 012407 A 0 25...

Page 24: ...8 JLA AD8221ARMZ 40 C to 85 C 40 C to 125 C 8 Lead MSOP RM 8 JLA AD8221ARMZ R7 40 C to 85 C 40 C to 125 C 8 Lead MSOP 7 Tape and Reel RM 8 JLA AD8221ARMZ RL 40 C to 85 C 40 C to 125 C 8 Lead MSOP 13 T...

Reviews: