The IEEE 488.2
DEADLOCK
error is handled as follows. If the response formatter is waiting to send
a response message and the input queue becomes full then the instrument enters the
DEADLOCK
state and an error is generated. This will cause the Query Error bit to be set in the Standard Event
Status Register, a value of 2 to be placed in the Query Error Register and the response formatter
to be reset thus clearing the output queue. The parser will then start parsing the next
<PROGRAM
MESSAGE UNIT>
from the input queue. See the Status Reporting section for further information.
GPIB Parallel Poll
Complete parallel poll capabilities are offered on this instrument. The Parallel Poll Enable
Register is set to specify which bits in the Status Byte Register are to be used to form the
ist
local
message The Parallel Poll Enable Register is set by the *PRE <nrf> command and read by the
*PRE? command. The value in the Parallel Poll Enable Register is ANDed with the Status Byte
Register; if the result is zero then the value of
ist
is 0 otherwise the value of
ist
is 1.
The instrument must also be configured so that the value of
ist
can be returned to the controller
during a parallel poll operation. The instrument is configured by the controller sending a Parallel
Poll Configure command (PPC) followed by a Parallel Poll Enable command (PPE). The bits in
the PPE command are shown below:
bit 7 =
X
don't care
bit 6 =
1
bit 5 =
1
Parallel poll enable
bit 4 =
0
bit 3 = Sense sense of the response bit; 0 = low, 1 = high
bit 2 =
?
bit 1 =
?
bit position of the response
bit 0 =
?
Example.
To return the RQS bit (bit 6 of the Status Byte Register) as a 1 when true and a 0 when
false in bit position 1 in response to a parallel poll operation send the following commands
*PRE 64
<pmt>,
then PPC followed by 69H (PPE)
The parallel poll response from the instrument will then be 00H if RQS is 0 and 01H if RQS
is 1.
During parallel poll response the DIO interface lines are resistively terminated (passive
termination). This allows multiple devices to share the same response bit position in either wired-
AND or wired-OR configuration, see IEEE 488.1 for more information.
Status Reporting
A separate error and status model is maintained for each interface instance; an interface instance
is defined as a potential connection. USB, GPIB and RS232 are inherently single connections so
represent one interface instance each. LAN, however, allows for multiple simultaneous
connections and therefore represents multiple interface instances. Two interface instances are
allocated to the two TCP socket interfaces and one more is allocated to the Web page interface.
Having a separate model for each interface instance ensures that data does not get lost as many
commands e.g. ‘*ESR?’ clear the contents on read.
Error status is maintained using a set of registers; these are described in the following
paragraphs and shown on the Status Model at the end of this section.
Standard Event Status and Standard Event Status Enable Registers
These two registers are implemented as required by the IEEE Std. 488.2.
Any bits set in the Standard Event Status Register which correspond to bits set in the Standard
Event Status Enable Register will cause the ESB bit to be set in the Status Byte Register.
25