background image

9.3 Radio (RF Core)

The RF Core is a highly flexible and future proof radio module which contains an Arm Cortex-M0 processor that
interfaces  the  analog  RF  and  base-band  circuitry,  handles  data  to  and  from  the  system  CPU  side,  and
assembles the information bits in a given packet structure. The RF core offers a high level, command-based API
to  the  main  CPU  that  configurations  and  data  are  passed  through.  The  Arm  Cortex-M0  processor  is  not
programmable  by  customers  and  is  interfaced  through  the  TI-provided  RF  driver  that  is  included  with  the
SimpleLink Software Development Kit (SDK).

The RF core can autonomously handle the time-critical aspects of the radio protocols, thus offloading the main
CPU,  which  reduces  power  and  leaves  more  resources  for  the  user  application.  Several  signals  are  also
available to control external circuitry such as RF switches or range extenders autonomously.

A Packet Traffic Arbitrator (PTA) scheme is available for the managed coexistence of BLE and a co-located 2.4-
GHz  radio.  This  is  based  on  802.15.2  recommendations  and  common  industry  standards.  The  3-wire
coexistence interface has multiple modes of operation, encompassing different use cases and number of lines
used  for  signaling.  The  radio  acting  as  a  slave  is  able  to  request  access  to  the  2.4-GHz  ISM  band,  and  the
master to grant it. Information about the request priority and TX or RX operation can also be conveyed.

The various physical layer radio formats are partly built as a software defined radio where the radio behavior is
either defined by radio ROM contents or by non-ROM radio formats delivered in form of firmware patches with
the SimpleLink SDKs. This allows the radio platform to be updated for support of future versions of standards
even with over-the-air (OTA) updates while still using the same silicon.

9.3.1 Bluetooth 5.2 Low Energy

The RF Core offers full support for Bluetooth 5.2 Low Energy, including the high-sped 2-Mbps physical layer and
the  500-kbps  and  125-kbps  long  range  PHYs  (Coded  PHY)  through  the  TI  provided  Bluetooth  5.2  stack  or
through  a  high-level  Bluetooth  API.  The  Bluetooth  5.2  PHY  and  part  of  the  controller  are  in  radio  and  system
ROM, providing significant savings in memory usage and more space available for applications.

The new high-speed mode allows data transfers up to 2 Mbps, twice the speed of Bluetooth 4.2 and five times
the speed of Bluetooth 4.0, without increasing power consumption. In addition to faster speeds, this mode offers
significant improvements for energy efficiency and wireless coexistence with reduced radio communication time.

Bluetooth 5.2 also enables unparalleled flexibility for adjustment of speed and range based on application needs,
which  capitalizes  on  the  high-speed  or  long-range  modes  respectively.  Data  transfers  are  now  possible  at  2
Mbps,  enabling  development  of  applications  using  voice,  audio,  imaging,  and  data  logging  that  were  not
previously  an  option  using  Bluetooth  low  energy.  With  high-speed  mode,  existing  applications  deliver  faster
responses, richer engagement, and longer battery life. Bluetooth 5.2 enables fast, reliable firmware updates.

9.3.2 802.15.4 (Thread, Zigbee, 6LoWPAN)

Through a dedicated IEEE radio API, the RF Core supports the 2.4-GHz IEEE 802.15.4-2011 physical layer (2
Mchips  per  second  Offset-QPSK  with  DSSS  1:8),  used  in  Thread,  Zigbee,  and  6LoWPAN  protocols.  The
802.15.4 PHY and MAC are in radio and system ROM. TI also provides royalty-free protocol stacks for Thread
and Zigbee as part of the SimpleLink SDK, enabling a robust end-to-end solution.

9.4 Memory

The  up  to  352-KB  nonvolatile  (Flash)  memory  provides  storage  for  code  and  data.  The  flash  memory  is  in-
system  programmable  and  erasable.  The  last  flash  memory  sector  must  contain  a  Customer  Configuration
section (CCFG) that is used by boot ROM and TI provided drivers to configure the device. This configuration is
done through the ccfg.c source file that is included in all TI provided examples.

The ultra-low leakage system static RAM (SRAM) is split into up to five 16-KB blocks and can be used for both
storage  of  data  and  execution  of  code.  Retention  of  SRAM  contents  in  Standby  power  mode  is  enabled  by
default and included in Standby mode power consumption numbers. Parity checking for detection of bit errors in
memory is built-in, which reduces chip-level soft errors and thereby increases reliability. System SRAM is always
initialized to zeroes upon code execution from boot.

CC2652RB

SWRS232D – FEBRUARY 2019 – REVISED FEBRUARY 2021

www.ti.com

50

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

Product Folder Links: 

CC2652RB

Содержание SimpleLink CC2652RB

Страница 1: ...e supply voltage range Normal operation 1 8 to 3 8 V External regulator mode 1 7 to 1 95 V Active mode RX 7 3 mA Active mode TX 0 dBm 7 9 mA Active mode TX 5 dBm 10 2 mA Active mode MCU 48 MHz CoreMar...

Страница 2: ...tocol operation through the Dynamic Multiprotocol Manager DMM software driver Integrated BAW resonator technology eliminates the need for external crystals without compromising latency or frequency st...

Страница 3: ...w power RF transceiver capability to support multiple physical layers and RF standards The CC2652RB device is part of the SimpleLink MCU platform which consists of Wi Fi Bluetooth Low Energy Thread Zi...

Страница 4: ...er Low Power Comparator 12 bit ADC 200 ks s Constant Current Source SPI I2 C Digital Sensor IF 4KB SRAM Time to Digital Converter 4 32 bit Timers 2 SSI SPI Watchdog Timer Temperature and Battery Monit...

Страница 5: ...d IEEE 802 15 4 2006 2 4 GHz OQPSK DSSS1 8 250 kbps RX 19 8 14 Timing and Switching Characteristics 19 8 15 Peripheral Characteristics 25 8 16 Typical Characteristics 33 9 Detailed Description 49 9 1...

Страница 6: ...wire 2 wire and 1 wire PTA coexistence mechanisms to the Radio Section list in Section 1 Features 1 Added Wireless protocols to Section 1 1 Changed the frequency of the input tone for 14 bit and 15 b...

Страница 7: ...48 CC2652RB Multiprotocol Bluetooth 5 2 Low Energy Zigbee Thread 2 4 GHz proprietary FSK based formats 352 80 31 RGZ 7 mm 7 mm VQFN48 CC2652P Multiprotocol Bluetooth 5 2 Low Energy Zigbee Thread 2 4 G...

Страница 8: ...DIO_25 DIO_24 VDDR VDDR_RF DIO_26 X48M_P X48M_N DIO_28 DIO_29 DIO_30 DIO_27 VDDS Figure 7 1 RGZ 7 mm 7 mm Pinout 0 5 mm Pitch Top View The following I O pins marked in Figure 7 1 in bold have high dri...

Страница 9: ...8 I O Digital GPIO DIO_19 29 I O Digital GPIO DIO_20 30 I O Digital GPIO DIO_21 31 I O Digital GPIO DIO_22 32 I O Digital GPIO DIO_23 36 I O Digital or Analog GPIO analog capability DIO_24 37 I O Digi...

Страница 10: ...the only ground connection for the device Good electrical connection to device ground on printed circuit board PCB is imperative for proper device operation 4 If internal DC DC converter is not used t...

Страница 11: ...4 Including analog capable DIOs 5 VDDR VDDS VDDS2 and VDDS3 must be at the same potential 8 2 ESD Ratings VALUE UNIT VESD Electrostatic discharge Human body model HBM per ANSI ESDA JEDEC JS 001 1 All...

Страница 12: ...l register retention RCOSC_LF 0 94 A RTC running CPU 80KB RAM and partial register retention XOSC_LF 1 09 A Standby with cache retention RTC running CPU 80KB RAM and partial register retention RCOSC_L...

Страница 13: ...Operations Flash retention 105 C 11 4 Years at 105 C Flash sector erase current Average delta current 10 7 mA Flash sector erase time 4 Zero cycles 10 ms Flash write current Average delta current 4 by...

Страница 14: ...uency error tolerance Difference between the incoming carrier frequency and the internally generated carrier frequency 300 300 kHz Data rate error tolerance Difference between incoming data rate and t...

Страница 15: ...ternally generated data rate 255 byte packets 175 175 ppm Co channel rejection 1 Wanted signal at 72 dBm modulated interferer in channel BER 10 3 3 5 dB Selectivity 1 MHz 1 Wanted signal at 72 dBm mod...

Страница 16: ...10 3 measured at input level 70 dBm 36 45 2 dB Selectivity 5 MHz or more 1 Wanted signal at 67 dBm modulated interferer at 5 MHz BER 10 3 measured at input level 70 dBm 40 dB Selectivity image freque...

Страница 17: ...at 67 dBm modulated interferer at 2 MHz from image frequency BER 10 3 measured at input level 70 dBm 7 36 2 dB Out of band blocking 3 30 MHz to 2000 MHz 16 dBm Out of band blocking 2003 MHz to 2399 M...

Страница 18: ...l measurements are performed at the antenna input with a combined RX and TX path All measurements are performed conducted PARAMETER TEST CONDITIONS MIN TYP MAX UNIT General Parameters Max output power...

Страница 19: ...and desensitization 5 MHz from lower band edge Wanted signal at 97 dBm 3 dB above the sensitivity level CW jammer PER 1 60 dB Blocking and desensitization 10 MHz from lower band edge Wanted signal at...

Страница 20: ...andby to Active 160 s MCU Active to Standby 36 s MCU Idle to Active 14 s 1 The wakeup time is dependent on remaining charge on VDDR capacitor when starting the device and thus how long the device has...

Страница 21: ...CL Crystal load capacitance 4 5 7 3 9 pF Start up time 2 200 s 1 Probing or otherwise stopping the crystal while the DC DC converter is enabled may cause permanent damage to the device 2 Start up tim...

Страница 22: ...F Measured on a Texas Instruments reference design with Tc 25 C VDDS 3 0 V unless otherwise noted MIN TYP MAX UNIT Calibrated frequency 32 8 1 kHz Temperature coefficient 50 ppm C 1 When using RCOSC_L...

Страница 23: ...s Figure 8 1 Figure 8 2 and Figure 8 3 2 When using the TI provided Power driver the SSI system clock is always 48 MHz SSIClk SSIFss SSITx SSIRx MSB LSB S2 S3 S1 4 to 16 bits Figure 8 1 SSI Timing for...

Страница 24: ...With SPH 1 8 14 5 UART 8 14 5 1 UART Characteristics over operating free air temperature range unless otherwise noted PARAMETER MIN TYP MAX UNIT UART rate 3 MBaud CC2652RB SWRS232D FEBRUARY 2019 REVI...

Страница 25: ...voltage scaling disabled 15 bit mode 200 kSamples s 150 Hz input tone 5 11 6 THD Total harmonic distortion Internal 4 3 V equivalent reference 2 200 kSamples s 9 6 kHz input tone 65 dB VDDS as refere...

Страница 26: ...the gain offset compensation factors stored in FCFG1 This value is derived from the scaled value 4 3 V as follows Vref 4 3 V 1408 4095 1 48 V Reference voltage VDDS as reference input voltage scaling...

Страница 27: ...3 0 V DAC charge pump OFF 53 2 VDDS 2 0 V DAC charge pump ON 48 7 VDDS 2 0 V DAC charge pump OFF 70 2 VDDS 1 8 V DAC charge pump ON 46 3 VDDS 1 8 V DAC charge pump OFF 88 9 Internal Load Continuous T...

Страница 28: ...COUPL pre charge OFF code 1 0 01 VREF DCOUPL pre charge OFF code 255 1 21 VREF DCOUPL pre charge ON code 1 1 27 VREF DCOUPL pre charge ON code 255 2 46 VREF ADCREF code 1 0 01 VREF ADCREF code 255 1 4...

Страница 29: ...or VREF VDDS 3 8 V code 1 0 03 V VREF VDDS 3 8 V code 255 3 61 VREF VDDS 3 0 V code 1 0 02 VREF VDDS 3 0 V code 255 2 85 VREF VDDS 1 8 V code 1 0 02 VREF VDDS 1 8 V code 255 1 71 VREF DCOUPL pre charg...

Страница 30: ...nsor is automatically compensated for VDDS variation when using the TI provided driver 8 15 3 2 Battery Monitor Measured on a Texas Instruments reference design with Tc 25 C unless otherwise noted PAR...

Страница 31: ...Time Comparator Tc 25 C VDDS 3 0 V unless otherwise noted PARAMETER TEST CONDITIONS MIN TYP MAX UNIT Input voltage range 1 0 VDDS V Offset Measured at VDDS 2 5 mV Decision time Step from 10 mV to 10 m...

Страница 32: ...at 8 mA load IOCURR 2 high drive GPIOs only 2 59 V GPIO VOL at 8 mA load IOCURR 2 high drive GPIOs only 0 42 V GPIO VOH at 4 mA load IOCURR 1 2 63 V GPIO VOL at 4 mA load IOCURR 1 0 40 V TA 25 C VDDS...

Страница 33: ...COSC 1 8 2 2 2 2 4 2 6 2 8 3 3 2 3 4 3 6 3 8 2 5 3 3 5 4 4 5 5 5 5 6 D001 Figure 8 4 Active Mode MCU Current vs Supply Voltage VDDS Temperature C Current A Standby Current vs Temperature 80 kB RAM Ret...

Страница 34: ...kHz XOSC VDDS 3 6 V 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 0 2 4 6 8 10 12 Figure 8 6 Standby Mode MCU Current vs Temperature VDDS 3 6 V CC2652RB SWRS232D FEBRUARY 2019 REVISED FEBRUARY 2021 www...

Страница 35: ...Current vs Temperature BLE 1 Mbps 2 44 GHz Voltage V Current mA RX Current vs VDDS BLE 1 Mbps 2 44 GHz 1 8 2 2 2 2 4 2 6 2 8 3 3 2 3 4 3 6 3 8 5 5 6 6 5 7 7 5 8 8 5 9 9 5 10 10 5 11 11 5 12 Figure 8 8...

Страница 36: ...TX Current vs Temperature BLE 1 Mbps 2 44 GHz Voltage V Current mA TX Current vs VDDS BLE 1 Mbps 2 44 GHz 0 dBm 1 8 2 2 2 2 4 2 6 2 8 3 3 2 3 4 3 6 3 8 6 6 5 7 7 5 8 8 5 9 9 5 10 10 5 11 11 5 12 12 5...

Страница 37: ...g SmartRF Studio Typical Output Power dBm Typical Current Consumption mA 0x7217 5 5 3 10 1 0x4E63 4 4 2 9 5 0x385D 3 3 1 9 0x3259 2 2 1 8 5 0x2856 1 1 2 8 2 0x2853 0 0 1 7 8 0x12D6 5 5 0 6 7 0x0ACF 10...

Страница 38: ...GHz Frequency GHz Sensitivity dBm Sensitivity vs Frequency IEEE 802 15 4 OQPSK DSSS1 8 250 kbps 2 4 2 408 2 416 2 424 2 432 2 44 2 448 2 456 2 464 2 472 2 48 105 104 103 102 101 100 99 98 97 96 95 Fig...

Страница 39: ...ture C Sensitivity dBm Sensitivity vs Temperature IEEE 802 15 4 OQPSK DSSS1 8 250 kbps 2 44 GHz 40 30 20 10 0 10 20 30 40 50 60 70 80 85 105 104 103 102 101 100 99 98 97 96 95 Figure 8 14 Sensitivity...

Страница 40: ...44 GHz Voltage V Sensitivity dBm Sensitivity vs VDDS BLE 1 Mbps 2 44 GHz DCDC Off 1 8 2 2 2 2 4 2 6 2 8 3 3 2 3 4 3 6 3 8 102 101 100 99 98 97 96 95 94 93 92 Figure 8 16 Sensitivity vs Supply Voltage...

Страница 41: ...8 3 3 2 3 4 3 6 3 8 105 104 103 102 101 100 99 98 97 96 95 Figure 8 17 Sensitivity vs Supply Voltage VDDS IEEE 802 15 4 OQPSK DSSS1 8 250 kbps www ti com CC2652RB SWRS232D FEBRUARY 2019 REVISED FEBRUA...

Страница 42: ...BLE 1 Mbps 2 44 GHz 0 dBm Temperature C Output Power dBm Output Power vs Temperature BLE 1 Mbps 2 44 GHz 5 dBm 40 30 20 10 0 10 20 30 40 50 60 70 80 85 3 3 2 3 4 3 6 3 8 4 4 2 4 4 4 6 4 8 5 5 2 5 4 5...

Страница 43: ...2 44 GHz 0 dBm Voltage V Output Power dBm Output power vs VDDS BLE 1 Mbps 2 44 GHz 5 dBm 1 8 2 2 2 2 4 2 6 2 8 3 3 2 3 4 3 6 3 8 3 3 2 3 4 3 6 3 8 4 4 2 4 4 4 6 4 8 5 5 2 5 4 5 6 5 8 6 6 2 6 4 6 6 6...

Страница 44: ...2 44 GHz 0 dBm Frequency GHz Output Power dBm Output Power vs Frequency BLE 1 Mbps 2 44 GHz 5 dBm 2 4 2 408 2 416 2 424 2 432 2 44 2 448 2 456 2 464 2 472 2 48 3 3 2 3 4 3 6 3 8 4 4 2 4 4 4 6 4 8 5 5...

Страница 45: ...0 30 20 10 0 10 20 30 40 50 60 70 80 85 25 20 15 10 5 0 5 10 15 20 25 Figure 8 24 Compensated Frequency Accuracy vs Temperature 2 44 GHz www ti com CC2652RB SWRS232D FEBRUARY 2019 REVISED FEBRUARY 202...

Страница 46: ...Figure 8 25 ENOB vs Input Frequency Frequency kHz ENOB Bit ENOB vs Sampling Frequency Vin 3 0 V Sine wave Internal reference Fin Fs 10 1 2 3 4 5 6 7 8 10 20 30 40 50 70 100 200 9 8 9 85 9 9 9 95 10 1...

Страница 47: ...INL vs ADC Code ADC Code DNL LSB DNL vs ADC Code Vin 3 0 V Sine wave Internal reference 200 kSamples s 0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 0 5 0 0 5 1 1 5 2 2 5 D065 Figure 8 28 DNL vs A...

Страница 48: ...racy vs Temperature Voltage V Voltage V ADC Accuracy vs VDDS Vin 1 V Internal reference 200 kSamples s 1 8 2 2 2 2 4 2 6 2 8 3 3 2 3 4 3 6 3 8 1 1 001 1 002 1 003 1 004 1 005 1 006 1 007 1 008 1 009 1...

Страница 49: ...itical applications Single cycle multiply instruction and hardware divide Hardware division and fast digital signal processing oriented multiply accumulate Saturating arithmetic for signal processing...

Страница 50: ...memory usage and more space available for applications The new high speed mode allows data transfers up to 2 Mbps twice the speed of Bluetooth 4 2 and five times the speed of Bluetooth 4 0 without in...

Страница 51: ...handling of digital sensors Dynamic reuse of hardware resources 40 bit accumulator supporting multiplication addition and shift Observability and debugging options Sensor Controller Studio is used to...

Страница 52: ...rting mathematical operations needed for elliptic curves up to 512 bits and RSA key pair generation up to 1024 bits Through use of these modules and the TI provided cryptography drivers the following...

Страница 53: ...clock or on each edge of a selected tick source Both one shot and periodical timer modes are available AUX Timer 2 is a 16 bit timer that can operate at 24 MHz 2 MHz or 32 kHz independent of the Sens...

Страница 54: ...lable in the CC2652RB device The battery and temperature monitor allows an application to continuously monitor on chip temperature and supply voltage and respond to changes in environmental conditions...

Страница 55: ...operation of the processor and all of the peripherals that are currently enabled The system clock can be any available clock source see Table 9 1 In Idle mode all active peripherals can be clocked bu...

Страница 56: ...he BAW oscillator clock frequency is actively compensated by the modem internal firmware to ensure frequency stability over temperature voltage and device lifetime Every time the PLL is tuned wakeup o...

Страница 57: ...the Integrated Passive Component section in CC13xx CC26xx Hardware Configuration and PCB Design Considerations for further information CC26x2RBEM 7ID Design Files The CC26x2RBEM 7ID reference design p...

Страница 58: ...ore The built in EnergyTrace software is an energy based code analysis tool that measures and displays the application s energy profile and helps to optimize it for ultra low power consumption See Tab...

Страница 59: ...es is now supported with CCS Cloud IAR Embedded Workbench for Arm IAR Embedded Workbench is a set of development tools for building and debugging embedded system applications using assembler C and C I...

Страница 60: ...ons Invest once in the SimpleLink software development kit and use throughout your entire portfolio Learn more on ti com simplelink 11 2 Documentation Support To receive notification of documentation...

Страница 61: ...Zigbee Alliance Inc Wi Fi is a registered trademark of Wi Fi Alliance Eclipse is a registered trademark of Eclipse Foundation IAR Embedded Workbench is a registered trademark of IAR Systems AB Window...

Страница 62: ...st current data available for the designated devices This data is subject to change without notice and revision of this document For browser based versions of this data sheet refer to the left hand na...

Страница 63: ...retardants must also meet the 1000ppm threshold requirement 3 MSL Peak Temp The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications and peak solder temperature...

Страница 64: ...e Package Type Package Drawing Pins SPQ Reel Diameter mm Reel Width W1 mm A0 mm B0 mm K0 mm P1 mm W mm Pin1 Quadrant CC2652RB1FRGZR VQFN RGZ 48 2500 330 0 16 4 7 3 7 3 1 1 12 0 16 0 Q2 PACKAGE MATERIA...

Страница 65: ...ons are nominal Device Package Type Package Drawing Pins SPQ Length mm Width mm Height mm CC2652RB1FRGZR VQFN RGZ 48 2500 336 6 336 6 31 8 PACKAGE MATERIALS INFORMATION www ti com 3 Sep 2020 Pack Mate...

Страница 66: ...IEW Images above are just a representation of the package family actual package may vary Refer to the product data sheet for package details VQFN 1 mm max height RGZ 48 PLASTIC QUADFLAT PACK NO LEAD 7...

Страница 67: ...l thermal and mechanical performance PACKAGE OUTLINE 4219044 C 09 2020 www ti com VQFN 1 mm max height PLASTIC QUADFLAT PACK NO LEAD RGZ0048A A 0 08 C 0 1 C A B 0 05 C B SYMM SYMM PIN 1 INDEX AREA 7 1...

Страница 68: ...ias under paste be filled plugged or tented EXAMPLE BOARD LAYOUT 4219044 C 09 2020 www ti com VQFN 1 mm max height RGZ0048A PLASTIC QUADFLAT PACK NO LEAD SYMM SYMM LAND PATTERN EXAMPLE SCALE 15X 5 15...

Страница 69: ...sign recommendations EXAMPLE STENCIL DESIGN 4219044 C 09 2020 www ti com VQFN 1 mm max height RGZ0048A PLASTIC QUADFLAT PACK NO LEAD SOLDER PASTE EXAMPLE BASED ON 0 125 mm THICK STENCIL EXPOSED PAD 67...

Страница 70: ...are subject to change without notice TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource Other reproduction and...

Отзывы: