background image

REJ03F0201-0201  Rev.2.01  Mar 31, 2008 

 

Page 1 of 19 

 

M61323SP/FP 

Wide Frequency Band Analog Switch 

REJ03F0201-0201 

Rev.2.01 

Mar 31, 2008 

Description 

The M61323SP/FP is a semiconductor integrated circuit for the RGBHV interface.  The device features switching 
signals input from two types of image sources and outputting the signals to the CRT display, etc.  Synchronous signals, 
meeting a frequency band of 10 kHz to 200 kHz, are output at TTL.  The frequency band of video signals is 250 MHz, 
acquiring high-resolution images, and are optimum as an interface IC with high-resolution CRT display and various 
new media. 

The M61323SP/FP keeps the power saving mode, and it can reduce I

CC

 about 10 mA under the condition that all V

CC

 

are supplied. 

Features 

• 

Frequency band : RGB  

 

250 MHz 

H, V  

 

10 kHz to 200 kHz 

• 

Input level:         RGB  

 

0.7 V

P-P

 (Typ.) 

H, V TTL input 

3 to 5 V

O-P

 (bipolar) 

• 

Only the G channel is provided with Sync-on video output.  The TTL format is adopted for HV output. 

 

Application 

Display monitor 

Recommended Operating Condition 

Supply voltage range: 

 

 

4.75 to 5.25 V 

Rated voltage range: 

 

 

5.0 V 

 

Содержание M61323SP/FP

Страница 1: ... The frequency band of video signals is 250 MHz acquiring high resolution images and are optimum as an interface IC with high resolution CRT display and various new media The M61323SP FP keeps the power saving mode and it can reduce ICC about 10 mA under the condition that all VCC are supplied Features Frequency band RGB 250 MHz H V 10 kHz to 200 kHz Input level RGB 0 7 VP P Typ H V TTL input 3 to...

Страница 2: ...D 22 Sync Sep INPUT Sync Sep OUT GND VCC Sync Sep R B G V H Power Save SW Input SW VCC R VCC G VCC B GND POWER SAVE SW 23 M61323FP Output G Buffer 26 GND 22 15 16 21 14 13 12 11 10 9 8 6 5 4 3 2 1 7 23 25 24 27 28 29 30 31 32 33 35 36 34 VCC R Input1 R VCC G Input1 G VCC B Input1 B Input1 H Input1 V GND Input2 R Input2 G Input2 B Input2 H Input2 V VCC R Output R GND VCC G Output G GND VCC B Output...

Страница 3: ... Output V GND3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20 19 18 17 24 23 22 21 28 27 26 25 32 31 30 29 Output G GND2 G VCC2 B VCC2 R Output R GND2 R VCC2 G Output B GND2 B G Buffer out Sync SEP in Sync SEP out VCC3 Input2 R Input1 V Input1 H Input1 B VCC1 B Input1 G Input1 R VCC1 R M61323FP Top view Outline PRSP0036GA B 36P2R D VCC1 G GND1 Power Save SW Input2 G Input SW Input2 B Input2 H Input2 V ...

Страница 4: ... SG2 bab SG2 bba SG2 b b b b b b b mA V V V V VP P VP P dB dB dB dB dB dB 10 0 1 0 7 1 3 0 4 0 0 4 0 4 0 0 4 0 6 0 0 6 SW2 Rin1 SW4 Gin1 SW6 Bin1 SW7 Hin1 SW8 Vin1 SW10 Rin2 SW12 Gin2 SW14 Bin2 SW15 Hin2 SW16 Vin2 SW11 P sav Min Limits Input SW Typ Max Unit Test Point s Circuit current1 Circuit current2 Output DC voltage1 Output DC voltage2 Output DC voltage3 Output DC voltage4 Maximum allowable i...

Страница 5: ...1 Pulse characteristic2 Crosstalk between two inputs4 100 MHz b b b b b b b b b b b b b b dB dB dB dB dB dB dB dB ns ns 60 45 60 45 40 30 40 30 50 40 50 40 30 25 30 25 1 6 2 5 1 6 2 5 abb SG3 bab SG3 bba SG3 abb SG3 bab SG3 bba SG3 b b b b b b b b b b b b b b abb SG4 bab SG4 bba SG4 abb SG4 bab SG4 bba SG4 b b b b b b b b b b b b b b b abb SG3 bab SG3 bba SG3 abb SG3 bab SG3 bba SG3 b b b b b b b ...

Страница 6: ...b b b 21 a 3 V V a SG7 b b 0 5 0 2 b b b b b b b b 21 a 3 V ns a SG7 b b 25 b b b b b b b b 21 a 3 V ns a SG7 b b b b 40 b b b b b b 21 a 3 V ns a SG7 b b 60 b b b b b b b b 21 a 3 V ns a SG7 b b b b 15 40 60 2 5 V V b b b a SG6 a SG6 b b b b b a SG6 a SG6 b b a SG6 a SG6 a SG8 a SG8 a SG8 a SG8 a SG7 a SG7 a 3 V a 3 V a variable a variable Symbol Vdch1 Vdch2 VithH VithL Vthch1 Vthch2 Tr3 HVDr HVD...

Страница 7: ...Set SW13 to GND input SG2 0 7 VP P to pin 2 only Read the output amplitude of TP31 The value is as VOR1 3 Voltage gain GV1 is GV1 20log dB 0 7 VOR1 VP P 4 In the same way calculate GV1 in response to inputs in pin 4 and pin 6 only 5 Then set SW13 to OPEN measure GV2 in response to inputs in pin l0 12 and 14 only Relative Voltage Gain 1 2 1 Calculate relative voltage gain GV1 by the following formu...

Страница 8: ... T I 2 in response to inputs in pin 12 and pin 14 only Crosstalk between Two Inputs 3 4 Set SG4 as the input signal and then the same method as table measure C T I 3 C T I 4 Crosstalk between Channels 1 2 1 The conditions is as table This measurement shall use active probe 2 Set SW13 to GND input SG3 0 7 VP P to pin 2 only Read the output amplitude of TP31 The value is as VOR5 3 Next measure TP28 ...

Страница 9: ...ch2 Vdcl2 Input Threshold Voltage H Input Threshold Voltage L 1 Set SW13 to GND or OPEN Gradually increasing the voltage of pin 7 or pin 15 from 0 V measure the input voltage of pin 7 or pin 15 when the TP19 voltage turned high level 3 8 V or more The value is as VithH 2 Gradually decreasing the voltage of pin 7 or pin 15 from 3 V measure the input voltage of pin 7 or pin 15 when the TP19 voltage ...

Страница 10: ... 0 10 90 STr STf Sync Output Rising Delay Time Sync Output Falling Delay Time Input SG7 to pin 22 Measure the rising delay time SDr and the falling delay time SDf 50 50 SG7 Waveform output SDr SDf Others Channel Select SW Threshold 1 2 1 Gradually increasing the voltage of pin 13 from 0 V measure the maximum voltage of pin 13 when the channel 1 is selected The value is as Vthch1 2 Gradually decrea...

Страница 11: ...ariable SG5 Sine wave f 250 MHz 0 7 VP P Amplitude variable SG6 0 7 VP P DUTY 80 fH 60 kHz 0 7 VP P SG7 Sync fH 60 kHz Amplitude variable Typ 0 3 VP P 4 5 µs SG8 5 V 0 V DUTY 50 fH 60 kHz TTL Typical Characteristics Power Dissipation Pd mW Ambient Temperature Ta C 1250 1500 1750 0 250 500 750 1000 1250 1500 1750 0 250 500 750 1000 833 85 1603 25 0 25 50 75 100 125 150 25 0 25 50 75 100 125 150 The...

Страница 12: ... 47 µ SW32 a b 0 01 µ 47 µ 0 01 µ 47 µ SW29 a b SW26 a b SW22 SG SS SW11 A VCCB 5 V TP23 TP19 TP11 a b 15 16 14 13 12 11 10 9 8 6 5 4 3 2 1 7 VCC 0 01 µ 0 01 µ 0 01 µ 47 µ 0 01 µ 19 22 21 20 23 24 25 26 27 28 29 31 32 30 17 18 A SW C VCCC 5 V a b 47 µ 1 µ SW B B OUT VCC R OUT VCC G OUT VCC SW2 a b a b 75 0 01 µ 47 µ 0 01 µ A VCC A 5 V a b 47 µ SW A 0 01 µ SG RGB SG HV open a c b SW13 TP13 R SW VCC...

Страница 13: ...WER SAVE VCC H SW V SW G Buffer Sync SEP ROUT GOUT BOUT G Buffer OUT Sync SEP OUT Hout Vout 1 µ 0 01 µ 47 µ VCC 5 V 0 01 µ 47 µ VCC 5 V 0 01 µ 0 01 µ 0 01 µ 75 0 01 µ 47 µ 0 01 µ 47 µ 75 0 01 µ 47 µ 75 0 01 µ 47 µ 75 0 01 µ 47 µ 75 0 01 µ 47 µ 75 Rin2 Gin2 Bin2 Hin2 Vin2 INPUT1 Rin1 Gin1 Bin1 Hin1 Vin1 OUTPUT 15 16 14 13 12 11 10 9 8 6 5 4 3 2 1 7 VCC VCC VCC Sync Sepa G 22 21 23 25 24 27 28 29 30...

Страница 14: ...C H V Sync Sep 5 0 26 29 32 VCC ROUT VCC GOUT VCC BOUT 5 0 2 4 6 10 12 14 Input1 R Input1 G Input1 B Input2 R Input2 G Input2 B 2 3 3 V 2 48 V 2 2 mA 643 750 Input signal with low impedance 7 8 15 16 Input1 H Input1 V Input2 H Input2 V SW 500 7 k Input pulse between 3 V and 5 V 3 to 5 V 0 to 0 8 V 9 17 24 27 30 GND V SW GND H V Sync Sep GND B out GND G out GND R out GND ...

Страница 15: ...n M61323SP cont pin No Name DC Voltage V Peripheral Circuit Function 11 PwrSave SW 2 5 2 0 V 30 k 15 k 25 k 25 k 10 k 20 k 20 k 20 k Do not apply more 5 V DC voltage 13 CONT SW 2 4 7 3 k 24 k 2 4 V 26 k 15 k 5 k Do not apply more 5 V DC voltage 18 19 Vout Hout 20 k 15 k 15 k 100 ...

Страница 16: ... DC Voltage V Peripheral Circuit Function 21 Sync sep OUT 15 k 15 k 15 k 100 22 Sync sep IN 10 k 10 k 2 k Vth CLAMPref Connect a capacitance between the pin and GND when not use SYNC SEP 23 G Buffer OUT 5 k 5 k 2 k 25 28 31 Video OUT B Video OUT G Video OUT R 1 5 50 32 29 26 pin 31 28 25 pin 30 27 24 pin ...

Страница 17: ...8 25 and GND ICC will be increase 5 Switch pin 13 can be changed by supplying some voltage as figure 2 0 to 0 5 V INPUT1 2 5 to 5 V INPUT2 Do not apply VCC or more DC voltage 6 Power save mode is provided for saving ICC less than about 10 mA as figure 3 0 to 0 5 V Power save mode H V SW Sync Sep G Buffer 2 5 to 5 V Normal mode Do not apply 5 V or more DC voltage 7 When not use the Sync separation ...

Страница 18: ...dependent power supply GND should be as wide as possible Basically solid earth should be used Make the load capacitance of output pins as small as possible Also ground the hold capacitance to stable GND which is as near to the pin as possible Insertion of a resistance of several tens of ohms between the output pin and the circuit at the next stage makes oscillation harder When inserting an output ...

Страница 19: ... Typ 32P4B PRDP0032BA A RENESAS Code JEITA Package Code Previous Code bp 0 35 0 45 0 55 10 16 9 86 10 46 b2 0 63 0 73 1 03 A2 3 8 0 1 528 2 028 e1 e 1 bp A1 HE y 0 10 e 0 8 c 0 8 L 0 3 0 5 0 7 0 0 1 0 2 A 2 35 11 63 11 93 12 23 A2 2 05 E 8 2 8 4 8 6 D 14 8 15 0 15 2 Reference Symbol Dimension in Millimeters Min Nom Max 0 3 0 35 0 45 0 18 0 2 0 25 P SSOP36 8 4x15 0 80 0 5g MASS Typ 36P2R D PRSP0036...

Страница 20: ...bility for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp its affiliated companies and their officers directors and employees against any and all damages arising out of such applications 9 You should use the products described herein within the ran...

Отзывы: