D
is
C
o
d
D
e
s
c
ri
z
io
n
e
D
is
C
o
d
D
e
s
c
ri
z
io
n
e
D
is
C
o
d
D
e
s
c
ri
z
io
n
e
0
0
4
0
2
8
3
4
4
A
S
S
.
P
O
R
T
E
L
L
O
N
&
D
.3
-5
1
0
2
0
3
2
5
4
6
R
D
A
D
O
A
B
L
M
E
T
A
L
L
IC
O
M
8
F
L
A
N
G
IA
T
O
Z
B
3
0
p
z
0
4
4
1
0
7
A
S
S
.F
.
M
O
T
O
R
ID
U
T
T
O
R
E
N
&
D
.3
2
2
0
V
0
0
6
0
2
8
3
5
3
L
E
V
A
A
L
B
E
R
O
B
A
R
R
A
+
B
O
C
C
O
L
A
K
U
N
&
D
1
0
6
0
1
1
1
3
2
C
U
S
C
IN
E
T
T
O
6
0
0
6
2
R
S
3
0
-5
5
-1
3
1
0
1
-3
9
-1
6
7
-1
6
-4
5
-1
5
1
-2
1
7
-2
0
-1
4
9
-1
8
8
0
0
7
0
2
8
3
3
4
B
L
O
C
C
A
S
P
IN
A
B
A
R
R
IE
R
E
1
0
7
0
3
2
6
8
0
R
R
O
N
D
E
L
L
A
3
0
-4
2
-1
,5
1
0
p
z
1
2
6
-1
8
7
-1
3
7
-3
7
-1
4
8
-2
0
7
-1
2
7
-1
2
4
-1
1
-1
2
4
-1
2
6
-1
2
1
0
0
9
0
2
8
3
5
4
L
E
V
A
F
O
L
L
E
+
B
O
C
C
O
L
A
K
U
N
&
D
1
0
8
0
2
5
1
0
4
R
S
E
E
G
E
R
5
2
I
3
0
p
z
0
1
1
0
2
8
3
4
5
P
IA
S
T
R
A
S
U
P
P
.
R
ID
U
T
T
O
R
E
S
T
M
N
&
D
1
0
9
0
3
1
1
1
5
C
H
IA
V
E
P
O
R
T
E
L
L
O
B
A
R
R
IE
R
E
0
4
4
1
0
8
A
S
S
.F
.
M
O
T
O
R
ID
U
T
T
O
R
E
N
&
D
.5
2
2
0
V
0
1
4
0
2
9
6
8
7
D
IM
A
B
2
-B
4
N
&
D
1
1
4
0
2
5
3
0
4
R
S
P
IN
A
E
L
.
S
P
IR
O
L
1
2
x
5
0
5
p
z
1
0
4
-4
3
-1
6
7
-1
6
-4
5
-1
5
1
-2
1
7
-2
0
-1
4
9
-1
8
8
0
1
5
0
2
8
3
5
7
S
U
P
P
O
R
T
O
M
IC
R
O
S
U
P
P
L
.
N
&
D
1
1
5
0
3
2
1
4
4
R
V
IT
E
T
E
M
6
x
6
5
I
N
O
X
1
0
p
z
1
2
6
-1
8
7
-1
3
7
-3
7
-1
4
8
-2
0
7
-1
2
7
-1
2
4
-1
1
-1
2
4
-1
2
6
-1
2
1
0
1
6
0
2
9
2
2
2
D
IS
C
O
M
A
G
N
E
T
IC
O
(co
n
m
o
lla
)
1
1
7
0
3
2
2
0
1
R
V
IT
E
T
C
E
I
M
6
x
1
6
8
.8
Z
B
3
0
p
z
0
1
9
0
2
8
3
5
1
S
U
P
P
O
R
T
O
M
IC
R
O
A
L
B
.R
ID
.
N
&
D
1
1
8
0
2
5
1
5
2
R
S
E
E
G
E
R
T
IP
O
H
a
M
E
Z
Z
A
L
U
N
A
Ø
3
0
3
0
p
z
0
4
0
5
1
0
P
R
E
M
.
F
IN
E
C
O
R
S
A
R
ID
.
N
&
D
0
2
0
0
2
9
9
4
4
C
O
P
E
R
T
U
R
A
R
E
V
E
R
S
E
R
0
8
-0
2
0
-P
L
-K
4
/6
1
2
0
0
3
2
5
0
4
R
D
A
D
O
A
B
L
M
1
0
6
S
Z
B
B
A
S
S
O
3
0
p
z
.
1
9
-1
4
1
-1
3
9
-1
4
3
-1
4
2
-1
4
0
0
2
4
0
2
8
3
4
9
A
L
B
E
R
O
B
A
R
R
A
N
&
D
1
2
1
0
3
2
5
3
7
R
D
A
D
O
M
8
6
S
Z
B
3
0
p
z
0
3
2
0
2
9
3
6
7
D
IS
T
A
N
Z
IA
T
O
R
E
L
E
V
A
F
O
L
L
E
B
2
T
-B
2
V
N
&
D
1
2
3
0
3
2
6
1
7
R
R
O
N
D
E
L
L
A
S
P
A
C
C
A
T
A
6
Z
B
3
0
p
z
0
4
0
5
1
3
P
R
E
M
.
L
E
V
A
F
O
L
L
E
N
&
D
0
3
3
0
2
8
4
7
7
S
U
P
P
O
R
T
O
C
A
R
T
E
R
B
L
-S
M
A
L
L
C
A
T
A
F
.
1
2
4
0
3
2
6
1
0
R
R
O
N
D
E
L
L
A
M
8
Z
B
3
0
p
0
0
9
-1
3
5
-1
9
8
-1
5
4
-1
9
8
0
3
4
0
2
8
4
7
6
S
E
R
R
.B
A
R
R
A
B
L
-S
M
A
L
L
C
A
T
A
F
.
1
2
6
0
3
2
6
1
1
R
R
O
N
D
E
L
L
A
S
P
A
C
C
A
T
A
8
Z
B
3
0
p
z
0
3
5
0
2
8
4
7
8
C
A
R
T
E
R
P
R
O
T
E
Z
IO
N
E
M
A
N
I
B
L
-S
M
A
L
L
1
2
7
0
3
2
1
7
6
R
V
IT
E
T
E
M
8
x
3
0
8
.8
Z
B
3
0
p
z
0
4
0
5
1
4
P
R
E
M
.
C
A
M
M
E
B
A
R
R
IE
R
A
ø
3
0
0
3
7
0
2
6
1
0
6
C
A
M
M
E
B
A
R
R
IE
R
A
ø
3
0
1
2
8
0
3
2
1
6
8
R
V
IT
E
T
E
M
8
x
2
0
I
N
O
X
3
0
p
z
0
3
7
-1
3
7
0
3
9
0
0
9
2
1
3
M
O
T
O
R
E
N
&
D
.3
2
2
0
V
5
0
H
z
1
2
9
0
3
2
6
3
4
R
R
O
N
D
E
L
L
A
M
8
I
N
O
X
3
0
p
z
0
4
0
0
2
4
1
2
7
M
O
L
L
A
C
O
N
T
R
A
P
.
B
2
-N
3
d
7
,5
R
O
S
S
A
1
3
0
0
3
2
5
2
5
R
D
A
D
O
A
B
L
M
8
6
S
Z
B
B
A
S
S
O
3
0
p
z
0
4
1
0
2
4
1
1
3
M
O
L
L
A
C
O
N
T
R
A
P
.
B
4
-N
5
d
8
B
L
U
1
3
1
0
3
1
5
2
4
C
A
T
E
N
A
F
L
E
Y
E
R
B
L
4
3
4
1
/2
+
G
IU
N
T
I
0
4
2
0
2
4
1
1
2
M
O
L
L
A
C
O
N
T
R
A
P
.
B
4
-N
5
d
9
.5
V
E
R
D
E
1
3
3
0
3
2
6
0
2
R
R
O
N
D
E
L
L
A
6
-1
8
-1
.5
I
N
O
X
3
0
p
z
0
4
3
0
0
9
2
1
4
M
O
T
O
R
E
N
&
D
.5
2
2
0
V
5
0
H
z
1
3
4
0
3
2
5
1
2
R
D
A
D
O
M
1
4
6
S
Z
B
3
0
p
z
0
4
4
0
2
8
3
4
7
S
C
A
T
O
L
A
T
O
P
R
O
T
E
Z
IO
N
E
M
O
L
L
A
N
&
D
1
3
5
0
1
6
2
0
5
R
B
O
C
C
O
L
A
K
U
3
0
-3
4
-1
5
H
1
0
p
z
0
4
5
0
2
9
6
8
6
S
U
P
P
O
R
T
O
R
E
V
E
R
S
E
R
B
A
R
R
IE
R
E
1
3
7
0
3
2
7
1
1
R
G
R
A
N
O
P
.P
IA
N
A
M
6
x
1
6
E
S
L
O
C
K
1
0
p
0
4
9
0
2
9
1
8
3
T
A
P
P
O
C
O
P
R
IA
L
B
E
R
O
ø
3
0
1
3
8
0
3
2
1
2
0
R
V
IT
E
T
E
M
6
x
6
5
8
.8
Z
B
3
0
p
0
5
4
0
3
1
5
1
8
A
D
E
S
IV
O
"
O
&
O
"
x
B
A
R
R
IE
R
E
P
R
E
S
P
A
Z
IA
T
O
1
3
9
0
3
3
2
0
3
M
IC
R
O
IN
T
.
F
IN
E
C
O
R
S
A
B
A
R
R
IE
R
E
0
5
6
0
2
0
2
0
5
Z
A
N
C
A
M
1
2
x
2
7
0
+
2
D
A
D
I
Z
N
B
+
S
X
B
A
R
R
IE
R
E
1
4
0
0
3
3
3
4
3
C
A
V
O
F
IN
E
C
O
R
S
A
B
2
-B
4
-B
7
-N
&
D
0
6
3
0
2
8
3
4
8
T
IR
A
N
T
E
M
O
L
L
A
N
&
D
M
1
4
x
3
6
5
+
R
O
N
D
E
L
L
A
S
A
L
D
A
T
A
1
4
1
0
3
2
3
4
4
R
V
IT
E
T
C
+
M
4
x
4
5
8
.8
Z
B
1
0
p
z
0
6
4
0
2
9
5
0
2
P
IS
T
O
N
E
M
O
L
L
A
B
2
-B
4
N
&
D
1
4
2
0
3
2
6
1
3
R
R
O
N
D
E
L
L
A
M
4
Z
B
3
0
p
z
0
6
5
0
2
8
5
2
8
R
IN
F
O
R
Z
O
S
E
R
R
A
G
G
IO
B
L
-S
M
A
L
L
-S
N
1
4
3
0
3
2
5
3
9
R
D
A
D
O
A
B
L
M
4
6
S
Z
B
B
A
S
S
O
3
0
p
z
0
8
0
0
2
9
6
4
9
L
E
V
A
A
L
B
E
R
O
B
A
R
R
A
D
D
3
-N
&
D
.D
D
3
1
4
4
0
3
2
5
0
5
R
D
A
D
O
A
B
L
M
6
6
S
Z
B
B
A
S
S
O
3
0
p
z
1
0
1
0
1
0
1
2
3
R
ID
U
T
T
O
R
E
N
&
D
.3
1
4
5
0
3
2
6
0
6
R
R
O
N
D
E
L
L
A
6
-1
8
-2
Z
.B
.
3
0
p
z
1
0
4
0
1
0
1
2
5
R
ID
U
T
T
O
R
E
C
O
N
P
R
E
C
O
P
P
IA
N
&
D
.5
1
4
6
0
3
2
6
2
3
R
R
O
N
D
E
L
L
A
M
6
Z
B
3
0
p
z
2
0
0
0
2
8
4
8
2
A
S
S
.
S
T
R
U
T
T
U
R
A
N
&
D
3
-5
x
B
L
-S
M
A
L
L
-
fi
n
it
o
1
4
8
0
2
5
2
1
7
R
L
IN
G
U
E
T
T
A
A
D
IS
C
O
8
x
1
1
1
0
p
z
2
0
3
0
2
8
3
5
2
A
S
S
.
A
N
C
O
R
.
S
U
P
.
M
O
L
L
A
N
&
D
3
-5
1
4
9
0
3
2
1
4
5
R
V
IT
E
T
E
M
4
x
1
6
8
.8
Z
B
3
0
p
z
2
0
6
0
2
8
3
5
0
A
S
S
.
L
E
V
A
I
N
T
E
R
M
E
D
IA
N
&
D
1
5
1
0
3
2
5
3
9
R
D
A
D
O
A
B
L
M
4
6
S
Z
B
B
A
S
S
O
3
0
p
z
2
0
7
0
2
8
3
4
6
A
S
S
.
A
L
B
-L
E
V
A
R
ID
U
T
T
O
R
E
N
&
D
1
5
4
0
2
5
1
0
9
R
S
E
E
G
E
R
3
2
I
3
0
p
z
2
1
0
0
4
0
3
7
8
A
S
S
.
P
O
R
T
A
B
A
R
R
A
B
L
-S
M
A
L
L
N
&
D
3
-5
K
4
C
A
T
A
F
.
1
5
7
0
3
1
1
1
4
S
E
R
R
A
T
U
R
A
B
A
R
R
IE
R
E
2
1
2
0
4
1
1
0
7
A
S
S
.
L
E
V
A
F
O
L
L
E
D
D
3
-N
&
D
.D
D
3
1
5
8
0
3
1
1
2
6
S
C
A
R
P
E
T
T
A
T
IP
O
1
8
B
2
-B
4
-N
&
D
1
8
1
0
3
2
2
3
5
R
V
IT
E
T
C
E
I
M
1
2
x
7
0
1
2
.9
D
A
C
R
O
M
E
T
1
0
p
z
2
1
3
0
4
1
3
3
8
A
S
S
.
P
O
M
O
L
O
M
.A
.M
.
N
&
D
1
6
0
0
2
5
1
1
5
R
S
E
E
G
E
R
B
E
N
Z
IN
G
1
2
3
0
p
z
1
8
2
0
3
2
5
4
0
R
D
A
D
O
A
B
L
M
1
2
6
S
Z
B
B
A
S
S
O
1
0
p
z
2
1
4
0
4
4
2
0
1
A
S
S
.
C
E
N
T
R
A
L
IN
A
A
R
X
.2
4
6
2
2
0
V
(co
n
st
a
ff
a
)
1
6
1
0
3
2
7
2
2
R
G
R
A
N
O
P
.P
IA
N
A
M
1
0
x
7
0
Z
B
1
0
p
1
8
3
0
3
2
1
2
1
R
V
IT
E
T
E
M
1
0
x
5
5
1
0
.9
Z
B
1
0
p
z
.
2
1
5
0
4
3
1
0
6
C
O
L
L
.
C
E
N
T
R
A
L
IN
A
A
R
X
.D
D
3
2
2
0
V
5
0
H
z
1
6
2
0
3
1
1
4
0
R
T
A
P
P
O
F
O
R
O
ø
8
1
0
p
z
1
8
4
0
3
3
3
8
5
C
A
V
O
L
U
C
I
D
K
5
+
P
O
R
T
.B
A
R
R
IE
R
E
2
x
2
1
0
0
m
m
2
1
7
0
4
3
1
1
7
S
E
N
S
O
R
E
R
E
V
E
R
S
E
R
B
2
/4
/7
/N
&
D
1
6
4
0
3
2
5
0
8
R
D
A
D
O
M
1
0
6
S
Z
B
3
0
p
z
1
8
6
0
3
2
1
8
4
R
V
IT
E
T
E
M
1
4
x
7
0
8
.8
Z
B
1
0
p
z
2
3
3
0
2
9
6
5
3
E
L
E
T
T
R
O
B
L
O
C
C
O
2
2
0
V
x
D
D
3
-N
&
D
.D
D
3
1
6
5
0
3
2
6
1
2
R
R
O
N
D
E
L
L
A
M
1
0
Z
B
3
0
p
z
.
1
8
7
0
3
2
6
6
2
R
R
O
N
D
E
L
L
A
8
,5
-4
0
-5
Z
B
1
0
p
z
1
6
6
0
3
2
6
8
5
R
O
N
D
E
L
L
A
S
IL
IC
O
N
E
T
R
A
S
P
.
3
3
-2
0
-3
1
8
8
0
3
2
1
0
2
R
V
IT
E
T
E
M
8
x
2
0
8
.8
Z
B
3
0
p
1
6
7
0
3
3
3
0
4
C
A
V
O
M
O
T
O
R
E
B
2
-B
4
-B
7
-N
&
D
1
9
0
0
3
1
1
1
2
P
O
M
O
L
O
B
A
R
R
IE
R
E
:
M
8
ø
5
0
1
7
0
0
3
2
5
0
6
R
D
A
D
O
A
B
L
M
6
I
N
O
X
B
A
S
S
O
3
0
p
z
1
9
1
0
3
2
6
2
8
R
R
O
N
D
E
L
L
A
M
1
2
Z
B
3
0
p
z
1
7
1
0
3
3
2
1
7
M
IC
R
O
IN
T
E
R
R
U
T
T
O
R
E
P
O
R
T
E
L
L
O
B
A
R
R
IE
R
E
1
9
2
0
3
2
2
6
5
R
V
IT
E
T
B
O
M
B
F
L
A
N
G
.
E
I
M
6
x
1
0
IN
O
X
3
0
p
z
1
7
2
0
1
6
2
0
9
R
B
O
C
C
O
L
A
K
U
2
0
-2
3
-3
0
H
1
0
p
z
1
9
3
0
3
1
5
2
6
T
A
P
P
O
C
O
N
IC
O
S
IL
IC
O
N
E
Ø
4
.8
-
8
.7
-
L
=
2
5
1
7
4
0
3
2
1
7
4
R
V
IT
E
T
E
M
6
x
8
0
8
.8
Z
B
T
F
1
0
p
z
1
9
6
0
3
2
5
4
4
R
D
A
D
O
A
B
L
M
1
4
6
S
Z
B
B
A
S
S
O
3
0
p
z
1
7
5
0
3
2
2
3
6
R
V
IT
E
T
C
E
I
M
8
x
2
5
8
.8
Z
B
1
0
p
z
1
9
7
0
3
2
6
8
8
R
R
O
N
D
E
L
L
A
M
1
4
Z
B
3
0
p
z
1
7
6
0
3
2
1
0
9
R
V
IT
E
T
E
M
1
0
x
8
0
8
.8
Z
B
T
F
1
0
p
z
1
9
8
0
1
1
1
4
3
C
U
S
C
IN
E
T
T
O
6
0
0
2
2
R
S
1
5
-3
2
-9
0
0
4
0
2
8
3
6
1
A
S
S
.
P
O
R
T
E
L
L
O
N
&
D
IN
O
X
-3
0
4
1
7
7
0
2
5
3
1
0
R
S
P
IN
A
E
L
.
S
P
IR
O
L
1
2
x
5
0
5
p
z
1
9
9
0
3
2
6
8
2
R
R
O
N
D
E
L
L
A
1
5
,2
5
-2
2
-1
,5
3
0
p
z
2
0
0
0
2
8
4
8
3
A
S
S
.
S
T
R
U
T
T
U
R
A
N
&
D
3
-5
x
B
L
-S
M
A
L
L
IN
O
X
-3
0
4
1
7
8
0
1
6
2
2
9
R
B
O
C
C
O
L
A
K
U
1
8
-2
0
-1
5
H
5
p
z
1
7
9
0
3
1
3
0
4
G
O
M
M
A
P
E
R
P
O
R
T
E
L
L
O
B
A
R
R
IE
R
A
IN
O
X
A
SSEM
B
L
A
G
G
I
C
O
N
SI
G
L
IA
T
I
B
A
R
R
IE
R
A
N
IG
H
T
&
D
A
Y
-3
N
IG
H
T
&
D
A
Y
.D
D
3
N
IG
H
T
&
D
A
Y
-5
ri
f.
e
s
p
l.
3
5
8
0
5
r
e
v
.0
1
0
PA
R
T
IC
O
L
A
R
I
A
D
ISEG
N
O
PA
R
T
IC
O
L
A
R
I
C
O
M
M
ER
C
IA
L
I