Chapter 22 FlexCAN
MPC5602P Microcontroller Reference Manual, Rev. 4
568
Freescale Semiconductor
•
Matching and arbitration are one-pass processes. If MBs are deactivated after they are scanned, no
re-evaluation is done to determine a new match/winner. If an Rx MB with a matching ID is
deactivated during the matching process after it was scanned, then this MB is marked as invalid to
receive the frame, and FlexCAN will keep looking for another matching MB within the ones it has
not scanned yet. If it can not find one, then the message will be lost. Suppose, for example, that two
MBs have a matching ID to a received frame, and the user deactivated the first matching MB after
FlexCAN has scanned the second. The received frame will be lost even if the second matching MB
was “free to receive”.
•
If a Tx MB containing the lowest ID is deactivated after FlexCAN has scanned it, then FlexCAN
will look for another winner within the MBs that it has not scanned yet. Therefore, it may transmit
an MB with ID that may not be the lowest at the time because a lower ID might be present in one
of the MBs that it had already scanned before the deactivation.
•
There is a point in time until which the deactivation of a Tx MB causes it not to be transmitted (end
of move-out). After this point, it is transmitted but no interrupt is issued and the Code field is not
updated. In order to avoid this situation, the abort procedures described in
should be used.
22.4.6.3
Message Buffer lock mechanism
Besides MB deactivation, FlexCAN has another data coherence mechanism for the receive process. When
the CPU reads the Control and Status word of an “active not empty” Rx MB, FlexCAN assumes that the
CPU wants to read the whole MB in an atomic operation, and thus it sets an internal lock flag for that MB.
The lock is released when the CPU reads the Free Running Timer (global unlock operation), or when it
reads the Control and Status word of another MB. The MB locking is done to prevent a new frame to be
written into the MB while the CPU is reading it.
NOTE
The locking mechanism only applies to Rx MBs that have a code different
than INACTIVE (‘0000’) or EMPTY
1
(‘0100’). Also, Tx MBs can not be
locked.
Suppose, for example, that the FIFO is disabled and the second and the fifth MBs of the array are
programmed with the same ID, and FlexCAN has already received and stored messages into these two
MBs. Suppose now that the CPU decides to read MB number 5 and at the same time another message with
the same ID is arriving. When the CPU reads the Control and Status word of MB number 5, this MB is
locked. The new message arrives and the matching algorithm finds out that there are no “free to receive”
MBs, so it decides to override MB number 5. However, this MB is locked, so the new message can not be
written there. It will remain in the SMB waiting for the MB to be unlocked, and only then will be written
to the MB. If the MB is not unlocked in time and yet another new message with the same ID arrives, then
the new message overwrites the one on the SMB and there will be no indication of lost messages either in
the Code field of the MB or in the Error and Status Register.
1. In previous FlexCAN versions, reading the C/S word locked the MB even if it was EMPTY. In current FlexCAN versions, this
behavior is maintained when the BCC bit is negated.
Содержание SAFE ASSURE Qorivva MPC5601P
Страница 2: ...MPC5602P Microcontroller Reference Manual Rev 4 2 Freescale Semiconductor ...
Страница 4: ...MPC5602P Microcontroller Reference Manual Rev 4 4 Freescale Semiconductor ...
Страница 62: ...Chapter 2 MPC5602P Memory Map MPC5602P Microcontroller Reference Manual Rev 4 62 Freescale Semiconductor ...
Страница 104: ...Chapter 4 Clock Description MPC5602P Microcontroller Reference Manual Rev 4 104 Freescale Semiconductor ...
Страница 128: ...Chapter 6 Power Control Unit MC_PCU MPC5602P Microcontroller Reference Manual Rev 4 128 Freescale Semiconductor ...
Страница 272: ...Chapter 12 e200z0 and e200z0h Core MPC5602P Microcontroller Reference Manual Rev 4 272 Freescale Semiconductor ...
Страница 280: ...Chapter 14 Crossbar Switch XBAR MPC5602P Microcontroller Reference Manual Rev 4 280 Freescale Semiconductor ...
Страница 306: ...Chapter 16 Internal Static RAM SRAM MPC5602P Microcontroller Reference Manual Rev 4 306 Freescale Semiconductor ...
Страница 380: ...Chapter 17 Flash Memory MPC5602P Microcontroller Reference Manual Rev 4 380 Freescale Semiconductor ...
Страница 532: ...Chapter 21 LIN Controller LINFlex MPC5602P Microcontroller Reference Manual Rev 4 532 Freescale Semiconductor ...
Страница 578: ...Chapter 22 FlexCAN MPC5602P Microcontroller Reference Manual Rev 4 578 Freescale Semiconductor ...
Страница 708: ...Chapter 25 FlexPWM MPC5602P Microcontroller Reference Manual Rev 4 708 Freescale Semiconductor ...
Страница 742: ...Chapter 26 eTimer MPC5602P Microcontroller Reference Manual Rev 4 742 Freescale Semiconductor ...
Страница 760: ...Chapter 27 Functional Safety MPC5602P Microcontroller Reference Manual Rev 4 760 Freescale Semiconductor ...
Страница 782: ...Chapter 28 Fault Collection Unit FCU MPC5602P Microcontroller Reference Manual Rev 4 782 Freescale Semiconductor ...
Страница 788: ...Chapter 29 Wakeup Unit WKPU MPC5602P Microcontroller Reference Manual Rev 4 788 Freescale Semiconductor ...
Страница 798: ...Chapter 30 Periodic Interrupt Timer PIT MPC5602P Microcontroller Reference Manual Rev 4 798 Freescale Semiconductor ...
Страница 816: ...Chapter 32 Cyclic Redundancy Check CRC MPC5602P Microcontroller Reference Manual Rev 4 816 Freescale Semiconductor ...
Страница 848: ...Chapter 33 Boot Assist Module BAM MPC5602P Microcontroller Reference Manual Rev 4 848 Freescale Semiconductor ...
Страница 930: ...Chapter 36 Nexus Development Interface NDI MPC5602P Microcontroller Reference Manual Rev 4 930 Freescale Semiconductor ...