Rev. 1.20
�0
�an�a�� 2�� 201�
Rev. 1.20
�1
�an�a�� 2�� 201�
BS82B12A-3/BS82C16A-3/BS82D20A-3
Touch Key 8-Bit Flash MCU with LED/LCD Driver
BS82B12A-3/BS82C16A-3/BS82D20A-3
Touch Key 8-Bit Flash MCU with LED/LCD Driver
System Operation Modes
There are five different modes of operation for the microcontroller, each one with its own
special characteristics and which can be chosen according to the specific performance and
power requirements of the application. There are two modes allowing normal operation of the
microcontroller, the NORMAL Mode and SLOW Mode. The remaining three modes, the SLEEP,
IDLE0 and IDLE1 Mode are used when the microcontroller CPU is switched off to conserve power.
Operating
Mode
Description
CPU
f
SYS
f
SUB
NORMAL mode
On
f
H
~f
H
/64
On
SLOW mode
On
f
SUB
On
ILDE0 mode
Off
Off
On
IDLE1 mode
Off
On
On
SLEEP mode
Off
Off
Off
NORMAL Mode
As the name suggests this is one of the main operating modes where the microcontroller has all of
its functions operational and where the system clock is provided by the high speed oscillator. This
mode operates allowing the microcontroller to operate normally with a clock source will come from
the high speed oscillator, HIRC. The high speed oscillator will however first be divided by a ratio
ranging from 1 to 64, the actual ratio being selected by the CKS2~CKS0 and HLCLK bits in the
SMOD register. Although a high speed oscillator is used, running the microcontroller at a divided
clock ratio reduces the operating current.
SLOW Mode
This is also a mode where the microcontroller operates normally although now with a slower speed
clock source. The clock source used will be from
f
SUB
. Running the microcontroller in this mode
allows it to run with much lower operating currents. In the SLOW Mode, the f
H
is off.
SLEEP Mode
The SLEEP Mode is entered when an HALT instruction is executed and when the IDLEN bit in
the SMOD register is low. In the SLEEP mode the CPU will be stopped, and the f
S
UB
clock will be
stopped too, the Watchdog Timer function is automatically disabled by hardware for power saving
.
IDLE0 Mode
The IDLE0 Mode is entered when a HALT instruction is executed and when the IDLEN bit in the
SMOD register is high and the FSYSON bit in the CTRL register is low. In the IDLE0 Mode the
system oscillator will be stop and will therefore be inhibited from driving the CPU.
IDLE1 Mode
The IDLE1 Mode is entered when a HALT instruction is executed and when the IDLEN bit in
the SMOD register is high and the FSYSON bit in the CTRL register is high. In the IDLE1 Mode
the system oscillator will be inhibited from driving the CPU but may continue to provide a clock
source to keep some peripheral functions operational. In the IDLE1 Mode, the system oscillator will
continue to run, and this system oscillator may be the high speed or low speed system oscillator.
Содержание BS82B12A-3
Страница 33: ...Rev 1 20 33 January 23 2015 BS82B12A 3 BS82C16A 3 BS82D20A 3 Touch Key 8 Bit Flash MCU with LED LCD Driver ...
Страница 34: ...Rev 1 20 34 January 23 2015 BS82B12A 3 BS82C16A 3 BS82D20A 3 Touch Key 8 Bit Flash MCU with LED LCD Driver ...
Страница 35: ...Rev 1 20 35 January 23 2015 BS82B12A 3 BS82C16A 3 BS82D20A 3 Touch Key 8 Bit Flash MCU with LED LCD Driver ...