![Hioki MR8740-50 Скачать руководство пользователя страница 176](http://html1.mh-extra.com/html/hioki/mr8740-50/mr8740-50_instruction-manual_2137326176.webp)
170
Operators of Waveform Calculation and Calculation Results
b
i
:
i
th data point of calculation results,
d
i
:
i
th data point acquired across the source channel
Waveform calculation
type
Description
Arc sine (ASIN)
With
d
i
> 1
b
i
= π / 2
With
−1 ≤
d
i
≤ 1
b
i
= arcsin(
d
i
)
With
d
i
< −1
b
i
= −π / 2 (
i
= 1, 2, . . . , n)
For the trigonometric and inverse trigonometric functions, specify numbers in radians
(rad).
Arc cosine (ACOS)
With
d
i
> 1
b
i
= 0
With
−1 ≤
d
i
≤ 1
b
i
= arccos(
d
i
)
With
d
i
< −1
b
i
= π (
i
= 1, 2, . . . , n)
For the trigonometric and inverse trigonometric functions, specify numbers in radians
(rad).
Arc tangent (ATAN)
b
i
= arctan(
d
i
) (
i
= 1, 2, . . . , n)
For the trigonometric and inverse trigonometric functions, specify numbers in radians
(rad).
Arc tangent 2
(ATAN2(y, x))
Responses arc tangent of (
y / x
) in the range of [
−π
,
π
]. Specify numbers in radians (rad).
ATAN2(
y
,
x
) =
With
x
≥ 0
ATAN(
y
/
x
)
With
x
< 0
and
y
≥ 0
ATAN(
y
/
x
) + π
With
x
< 0
and
y
< 0
ATAN(
y
/
x
) − π
1st-order differential
(DIF)
2nd-order differential
(DIF2)
The instrument makes 1st-order differential and 2nd-order differential calculations using
5th-order Lagrange interpolation formula to obtain 1-point data from 5-point values that
includes before and after the point.
The instrument differentiates data
d
1
to
d
n
considering them as the corresponding data
for the sampling time
t
1
to
t
1
.
Note If the instrument differentiates a waveform that oscillates slowly, calculation results
vary significantly.
In such a case, raise the second parameter of the function.
The following expressions hold provided the second parameter equals one.
Arithmetic expressions of 1st-order differential
Point
t
1
b
1
= (−25
d
1
+ 48
d
2
− 36
d
3
+ 16
d
4
− 3
d
5
) / 12
h
Point
t
2
b
2
= (−3
d
1
− 10
d
2
+ 18
d
3
− 6
d
4
+
d
5
) / 12
h
Point
t
3
b
3
= (
d
1
− 8
d
2
+ 8
d
4
−
d
5
) / 12
h
↓
Point
t
i
b
i
= (
d
i
−2
− 8
d
i
−1
+ 8
d
i
+1
−
d
i
+2
) / 12
h
↓
Point
t
n−2
b
n−2
= (
d
n−4
− 8
d
n−3
+ 8
d
n−1
−
d
n
) / 12
h
Point
t
n−1
b
n−1
= (−
d
n−4
+ 6
d
n−3
− 18
d
n−2
+ 10
d
n−1
+ 3
d
n
) / 12
h
Point
t
n
b
n
= (3
d
n−4
− 16
d
n−3
+ 36
d
n−2
− 48
d
n−1
+ 25
d
n
) / 12
h
b
1
through
b
n
: Calculation result data
h
= Δ
t
: Sampling interval
Arithmetic expressions of 2nd-order differential
Point
t
1
b
1
= (35
d
1
− 104
d
2
+ 114
d
3
− 56
d
4
+ 11
d
5
) / 12
h
2
Point
t
2
b
2
= (11
d
1
− 20
d
2
+ 6
d
3
+ 4
d
4
−
d
5
) / 12
h
2
Point
t
3
b
3
= (−
d
1
+ 16
d
2
− 30
d
3
+ 16
d
4
−
d
5
) / 12
h
2
↓
Point
t
i
b
i
= (−
d
i-2
+ 16
d
i−1
− 30
d
i
+ 16
d
i+1
−
d
i+2
) / 12
h
2
↓
Point
t
n−2
b
n−2
= (−
d
n−4
+ 16
d
n−3
− 30
d
n−2
+ 16
d
n−1
−
d
n
) / 12
h
2
Point
t
n−1
b
n−1
= (−
d
n−4
+ 4
d
n−3
+ 6
d
n−2
− 20
d
n−1
+ 11
d
n
) / 12
h
2
Point
t
n
b
n
= (11
d
n−4
− 56
d
n−3
+ 114
d
n−2
− 104
d
n−1
+ 35
d
n
) / 12
h
2
Содержание MR8740-50
Страница 2: ......
Страница 6: ...Contents iv...
Страница 40: ...34 Enlarging a Part of the Waveform Zoom Function...
Страница 86: ...80 Configuring Generator Module Specific Settings...
Страница 128: ...122 Automatically Specifying the Trigger Level Auto trigger Level...
Страница 164: ...158 Numerical Calculation Types and Descriptions...
Страница 182: ...176 Displaying Waveforms...
Страница 186: ...180...
Страница 214: ...208 Operating the Instrument With a Browser Installed in a Computer...
Страница 224: ...218 External Sampling EXT SMPL...
Страница 232: ...226 Information for Reference Purposes...
Страница 236: ...230 Index...
Страница 237: ......
Страница 238: ......