GE Multilin
C70 Capacitor Bank Protection and Control System
B-61
APPENDIX B
B.4 MEMORY MAPPING
B
B.4.2 DATA FORMATS
F001
UR_UINT16 UNSIGNED 16 BIT INTEGER
F002
UR_SINT16 SIGNED 16 BIT INTEGER
F003
UR_UINT32 UNSIGNED 32 BIT INTEGER (2 registers)
High order word is stored in the first register.
Low order word is stored in the second register.
F004
UR_SINT32 SIGNED 32 BIT INTEGER (2 registers)
High order word is stored in the first register/
Low order word is stored in the second register.
F005
UR_UINT8 UNSIGNED 8 BIT INTEGER
F006
UR_SINT8 SIGNED 8 BIT INTEGER
F011
UR_UINT16 FLEXCURVE DATA (120 points)
A FlexCurve is an array of 120 consecutive data points (x, y) which
are interpolated to generate a smooth curve. The y-axis is the user
defined trip or operation time setting; the x-axis is the pickup ratio
and is pre-defined. Refer to format F119 for a listing of the pickup
ratios; the enumeration value for the pickup ratio indicates the off-
set into the FlexCurve base address where the corresponding time
value is stored.
F012
DISPLAY_SCALE DISPLAY SCALING
(unsigned 16-bit integer)
MSB indicates the SI units as a power of ten. LSB indicates the
number of decimal points to display.
Example: Current values are stored as 32 bit numbers with three
decimal places and base units in Amps. If the retrieved value is
12345.678 A and the display scale equals 0x0302 then the dis-
played value on the unit is 12.35 kA.
F013
POWER_FACTOR (SIGNED 16 BIT INTEGER)
Positive values indicate lagging power factor; negative values
indicate leading.
F040
UR_UINT48 48-BIT UNSIGNED INTEGER
F050
UR_UINT32 TIME and DATE (UNSIGNED 32 BIT INTEGER)
Gives the current time in seconds elapsed since 00:00:00 January
1, 1970.
F051
UR_UINT32 DATE in SR format (alternate format for F050)
First 16 bits are Month/Day (MM/DD/xxxx). Month: 1=January,
2=February,...,12=December; Day: 1 to 31 in steps of 1
Last 16 bits are Year (xx/xx/YYYY): 1970 to 2106 in steps of 1
F052
UR_UINT32 TIME in SR format (alternate format for F050)
First 16 bits are Hours/Minutes (HH:MM:xx.xxx).
Hours: 0=12am, 1=1am,...,12=12pm,...23=11pm;
Minutes: 0 to 59 in steps of 1
Last 16 bits are Seconds (xx:xx:.SS.SSS): 0=00.000s,
1=00.001,...,59999=59.999s)
F060
FLOATING_POINT IEEE FLOATING POINT (32 bits)
F070
HEX2 2 BYTES - 4 ASCII DIGITS
F071
HEX4 4 BYTES - 8 ASCII DIGITS
F072
HEX6 6 BYTES - 12 ASCII DIGITS
F073
HEX8 8 BYTES - 16 ASCII DIGITS
F074
HEX20 20 BYTES - 40 ASCII DIGITS
F083
ENUMERATION: SELECTOR MODES
0 = Time-Out, 1 = Acknowledge
F084
ENUMERATION: SELECTOR POWER UP
0 = Restore, 1 = Synchronize, 2 = Sync/Restore
Содержание UR Series C70
Страница 2: ......
Страница 10: ...x C70 Capacitor Bank Protection and Control System GE Multilin TABLE OF CONTENTS ...
Страница 30: ...1 20 C70 Capacitor Bank Protection and Control System GE Multilin 1 5 USING THE RELAY 1 GETTING STARTED 1 ...
Страница 124: ...4 30 C70 Capacitor Bank Protection and Control System GE Multilin 4 3 FACEPLATE INTERFACE 4 HUMAN INTERFACES 4 ...
Страница 344: ...5 220 C70 Capacitor Bank Protection and Control System GE Multilin 5 10 TESTING 5 SETTINGS 5 ...
Страница 396: ...8 18 C70 Capacitor Bank Protection and Control System GE Multilin 8 3 ENERVISTA SECURITY MANAGEMENT SYSTEM 8 SECURITY 8 ...
Страница 414: ...9 18 C70 Capacitor Bank Protection and Control System GE Multilin 9 1 OVERVIEW 9 THEORY OF OPERATION 9 ...
Страница 436: ...10 22 C70 Capacitor Bank Protection and Control System GE Multilin 10 4 SETTING EXAMPLE 10 APPLICATION OF SETTINGS 10 ...
Страница 547: ...GE Multilin C70 Capacitor Bank Protection and Control System B 79 APPENDIX B B 4 MEMORY MAPPING B ...
Страница 548: ...B 80 C70 Capacitor Bank Protection and Control System GE Multilin B 4 MEMORY MAPPING APPENDIXB B ...
Страница 586: ...D 10 C70 Capacitor Bank Protection and Control System GE Multilin D 1 OVERVIEW APPENDIXD D ...
Страница 598: ...E 12 C70 Capacitor Bank Protection and Control System GE Multilin E 2 DNP POINT LISTS APPENDIXE E ...