5-66
G60 Generator Protection System
GE Multilin
5.4 SYSTEM SETUP
5 SETTINGS
5
5.4SYSTEM SETUP
5.4.1 AC INPUTS
a) CURRENT BANKS
PATH: SETTINGS
ÖØ
SYSTEM SETUP
Ö
AC INPUTS
Ö
CURRENT BANK F1(M5)
Because energy parameters are accumulated, these values should be recorded and then reset immediately
prior to changing CT characteristics.
Four banks of phase and ground CTs can be set, where the current banks are denoted in the following format (
X
represents
the module slot position letter):
Xa
, where
X
= {
F
,
M
} and
a
= {
1
,
5
}.
See the
Introduction to AC Sources
section at the beginning of this chapter for additional details.
These settings are critical for all features that have settings dependent on current measurements. When the relay is
ordered, the CT module must be specified to include a standard or sensitive ground input. As the phase CTs are connected
in wye (star), the calculated phasor sum of the three phase currents (IA + IB + IC = neutral current = 3Io) is used as the
input for the neutral overcurrent elements. In addition, a zero-sequence (core balance) CT which senses current in all of the
circuit primary conductors, or a CT in a neutral grounding conductor may also be used. For this configuration, the ground
CT primary rating must be entered. To detect low level ground fault currents, the sensitive ground input may be used. In this
case, the sensitive ground CT primary rating must be entered. Refer to chapter 3 for more details on CT connections.
Enter the rated CT primary current values. For both 1000:5 and 1000:1 CTs, the entry would be 1000. For correct opera-
tion, the CT secondary rating must match the setting (which must also correspond to the specific CT connections used).
The following example illustrates how multiple CT inputs (current banks) are summed as one source current. Given If the
following current banks:
•
F1: CT bank with 500:1 ratio.
•
F5: CT bank with 1000: ratio.
•
M1: CT bank with 800:1 ratio.
The following rule applies:
(EQ 5.6)
1 pu is the highest primary current. In this case, 1000 is entered and the secondary current from the 500:1 ratio CT will be
adjusted to that created by a 1000:1 CT before summation. If a protection element is set up to act on SRC 1 currents, then
a pickup level of 1 pu will operate on 1000 A primary.
The same rule applies for current sums from CTs with different secondary taps (5 A and 1 A).
CURRENT BANK F1
PHASE CT F1
PRIMARY: 1
A
Range: 1 to 65000 A in steps of 1
MESSAGE
PHASE CT F1
SECONDARY: 1 A
Range: 1 A, 5 A
MESSAGE
GROUND CT F1
PRIMARY: 1
A
Range: 1 to 65000 A in steps of 1
MESSAGE
GROUND CT F1
SECONDARY: 1 A
Range: 1 A, 5 A
NOTE
SRC 1
F1
F5
M1
+
+
=
Содержание G60 UR Series
Страница 2: ......
Страница 4: ......
Страница 12: ...xii G60 Generator Protection System GE Multilin TABLE OF CONTENTS ...
Страница 32: ...1 20 G60 Generator Protection System GE Multilin 1 5 USING THE RELAY 1 GETTING STARTED 1 ...
Страница 102: ...3 48 G60 Generator Protection System GE Multilin 3 4 MANAGED ETHERNET SWITCH MODULES 3 HARDWARE 3 ...
Страница 132: ...4 30 G60 Generator Protection System GE Multilin 4 3 FACEPLATE INTERFACE 4 HUMAN INTERFACES 4 ...
Страница 392: ...5 260 G60 Generator Protection System GE Multilin 5 10 TESTING 5 SETTINGS 5 ...
Страница 418: ...6 26 G60 Generator Protection System GE Multilin 6 5 PRODUCT INFORMATION 6 ACTUAL VALUES 6 ...
Страница 446: ...8 18 G60 Generator Protection System GE Multilin 8 3 ENERVISTA SECURITY MANAGEMENT SYSTEM 8 SECURITY 8 ...
Страница 452: ...9 6 G60 Generator Protection System GE Multilin 9 1 PHASE DISTANCE THROUGH POWER TRANSFORMERS 9 THEORY OF OPERATION 9 ...
Страница 482: ...A 12 G60 Generator Protection System GE Multilin A 1 PARAMETER LISTS APPENDIXA A ...
Страница 604: ...D 10 G60 Generator Protection System GE Multilin D 1 IEC 60870 5 104 APPENDIXD D ...
Страница 616: ...E 12 G60 Generator Protection System GE Multilin E 2 DNP POINT LISTS APPENDIXE E ...
Страница 634: ...x G60 Generator Protection System GE Multilin INDEX ...