5-68
G60 Generator Protection System
GE Multilin
5.4 SYSTEM SETUP
5 SETTINGS
5
The power system
NOMINAL FREQUENCY
value is used as a default to set the digital sampling rate if the system frequency
cannot be measured from available signals. This may happen if the signals are not present or are heavily distorted. Before
reverting to the nominal frequency, the frequency tracking algorithm holds the last valid frequency measurement for a safe
period of time while waiting for the signals to reappear or for the distortions to decay.
The phase sequence of the power system is required to properly calculate sequence components and power parameters.
The
PHASE ROTATION
setting matches the power system phase sequence. Note that this setting informs the relay of the
actual system phase sequence, either ABC or ACB. CT and VT inputs on the relay, labeled as A, B, and C, must be con-
nected to system phases A, B, and C for correct operation.
The
REVERSE PH ROTATION
setting allows the user to dynamically change the phase rotation used for phasor calculations.
This allows the G60 to follow the current phase rotation of the protected generator. For example, if the
PHASE ROTATION
set-
ting is “ABC” but the condition defined for opposite phase rotation is true, then the phase rotation used for phasor calcula-
tion will switch to “ACB”. This feature is only intended for use in special applications, such as pumped storage schemes
The
FREQUENCY AND PHASE REFERENCE
setting determines which signal source is used (and hence which AC signal) for
phase angle reference. The AC signal used is prioritized based on the AC inputs that are configured for the signal source:
phase voltages takes precedence, followed by auxiliary voltage, then phase currents, and finally ground current.
For three phase selection, phase A is used for angle referencing (
), while Clarke transformation of the
phase signals is used for frequency metering and tracking (
) for better performance dur-
ing fault, open pole, and VT and CT fail conditions.
The phase reference and frequency tracking AC signals are selected based upon the Source configuration, regardless of
whether or not a particular signal is actually applied to the relay.
Phase angle of the reference signal will always display zero degrees and all other phase angles will be relative to this sig-
nal. If the pre-selected reference signal is not measurable at a given time, the phase angles are not referenced.
The phase angle referencing is done via a phase locked loop, which can synchronize independent UR-series relays if they
have the same AC signal reference. These results in very precise correlation of time tagging in the event recorder between
different UR-series relays provided the relays have an IRIG-B connection.
FREQUENCY TRACKING
should only be set to
“
Disabled
”
in very unusual circumstances; consult the factory for spe-
cial variable-frequency applications.
The frequency tracking feature will function only when the G60 is in the “Programmed” mode. If the G60 is “Not Pro-
grammed”, then metering values will be available but may exhibit significant errors.
5.4.3 SIGNAL SOURCES
PATH: SETTINGS
ÖØ
SYSTEM SETUP
ÖØ
SIGNAL SOURCES
Ö
SOURCE 1(4)
Identical menus are available for each source. The "SRC 1" text can be replaced by with a user-defined name appropriate
for the associated source.
SOURCE 1
SOURCE 1 NAME:
SRC 1
Range: up to six alphanumeric characters
MESSAGE
SOURCE 1 PHASE CT:
None
Range: None, F1, F5, F1+F5,... up to a combination of
any 6 CTs. Only Phase CT inputs are displayed.
MESSAGE
SOURCE 1 GROUND CT:
None
Range: None, F1, F5, F1+F5,... up to a combination of
any 6 CTs. Only Ground CT inputs are displayed.
MESSAGE
SOURCE 1 PHASE VT:
None
Range: None, F5, M5
Only phase voltage inputs will be displayed.
MESSAGE
SOURCE 1 AUX VT:
None
Range: None, F5, M5
Only auxiliary voltage inputs will be displayed.
V
ANGLE REF
V
A
=
V
FREQUENCY
2
V
A
V
B
–
V
C
–
(
)
3
⁄
=
NOTE
NOTE
Содержание G60 UR Series
Страница 2: ......
Страница 4: ......
Страница 12: ...xii G60 Generator Protection System GE Multilin TABLE OF CONTENTS ...
Страница 32: ...1 20 G60 Generator Protection System GE Multilin 1 5 USING THE RELAY 1 GETTING STARTED 1 ...
Страница 102: ...3 48 G60 Generator Protection System GE Multilin 3 4 MANAGED ETHERNET SWITCH MODULES 3 HARDWARE 3 ...
Страница 132: ...4 30 G60 Generator Protection System GE Multilin 4 3 FACEPLATE INTERFACE 4 HUMAN INTERFACES 4 ...
Страница 392: ...5 260 G60 Generator Protection System GE Multilin 5 10 TESTING 5 SETTINGS 5 ...
Страница 418: ...6 26 G60 Generator Protection System GE Multilin 6 5 PRODUCT INFORMATION 6 ACTUAL VALUES 6 ...
Страница 446: ...8 18 G60 Generator Protection System GE Multilin 8 3 ENERVISTA SECURITY MANAGEMENT SYSTEM 8 SECURITY 8 ...
Страница 452: ...9 6 G60 Generator Protection System GE Multilin 9 1 PHASE DISTANCE THROUGH POWER TRANSFORMERS 9 THEORY OF OPERATION 9 ...
Страница 482: ...A 12 G60 Generator Protection System GE Multilin A 1 PARAMETER LISTS APPENDIXA A ...
Страница 604: ...D 10 G60 Generator Protection System GE Multilin D 1 IEC 60870 5 104 APPENDIXD D ...
Страница 616: ...E 12 G60 Generator Protection System GE Multilin E 2 DNP POINT LISTS APPENDIXE E ...
Страница 634: ...x G60 Generator Protection System GE Multilin INDEX ...