GE Multilin
B90 Low Impedance Bus Differential System
5-3
5 SETTINGS
5.1 OVERVIEW
5
5.1.2 INTRODUCTION TO ELEMENTS
In the design of UR relays, the term
element
is used to describe a feature that is based around a comparator. The compar-
ator is provided with an input (or set of inputs) that is tested against a programmed setting (or group of settings) to deter-
mine if the input is within the defined range that will set the output to logic 1, also referred to as
setting the flag
. A single
comparator may make multiple tests and provide multiple outputs; for example, the time overcurrent comparator sets a
pickup flag when the current input is above the setting and sets an operate flag when the input current has been at a level
above the pickup setting for the time specified by the time-current curve settings. All comparators use analog parameter
actual values as the input.
The exception to the above rule are the digital elements, which use logic states as inputs.
Elements are arranged into two classes,
grouped
and
control
. Each element classed as a grouped element is provided with
six alternate sets of settings, in setting groups numbered 1 through 6. The performance of a grouped element is defined by
the setting group that is active at a given time. The performance of a control element is independent of the selected active
setting group.
The main characteristics of an element are shown on the element logic diagram. This includes the inputs, settings, fixed
logic, and the output operands generated (abbreviations used on scheme logic diagrams are defined in Appendix F).
Some settings for current and voltage elements are specified in per-unit (pu) calculated quantities:
pu quantity
= (actual quantity) / (base quantity)
For current elements, the
base quantity
is the nominal secondary or primary current of the CT.
For voltage elements the base quantity is the nominal primary voltage of the protected system which corresponds (based
on VT ratio and connection) to secondary VT voltage applied to the relay.
For example, on a system with a 13.8 kV nominal primary voltage and with 14400:120 V delta-connected VTs, the second-
ary nominal voltage (1 pu) would be:
REMOTE OUTPUTS
UserSt BIT PAIRS
RESETTING
DIRECT INPUTS
DIRECT OUTPUTS
IEC 61850
GOOSE ANALOGS
IEC 61850
GOOSE UINTEGERS
SETTINGS
TESTING
TEST MODE
FUNCTION: Disabled
TEST MODE FORCING:
On
FORCE CONTACT
INPUTS
FORCE CONTACT
OUTPUTS
NOTE
Содержание B90 UR Series
Страница 28: ...1 20 B90 Low Impedance Bus Differential System GE Multilin 1 5 USING THE RELAY 1 GETTING STARTED 1 ...
Страница 114: ...4 28 B90 Low Impedance Bus Differential System GE Multilin 4 3 FACEPLATE INTERFACE 4 HUMAN INTERFACES 4 ...
Страница 272: ...6 14 B90 Low Impedance Bus Differential System GE Multilin 6 5 PRODUCT INFORMATION 6 ACTUAL VALUES 6 ...
Страница 316: ...A 4 B90 Low Impedance Bus Differential System GE Multilin A 1 PARAMETER LISTS APPENDIX A A ...
Страница 406: ...B 90 B90 Low Impedance Bus Differential System GE Multilin B 4 MEMORY MAPPING APPENDIX B B ...
Страница 436: ...C 30 B90 Low Impedance Bus Differential System GE Multilin C 7 LOGICAL NODES APPENDIX C C ...
Страница 446: ...D 10 B90 Low Impedance Bus Differential System GE Multilin D 1 IEC 60870 5 104 APPENDIX D D ...