![Galil DMC-4040 Скачать руководство пользователя страница 42](http://html1.mh-extra.com/html/galil/dmc-4040/dmc-4040_user-manual_3282915042.webp)
Home Switch Input
Homing inputs are designed to provide mechanical reference points for a motion control application. A transition in
the state of a Home input alerts the controller that a particular reference point has been reached by a moving part in
the motion control system. A reference point can be a point in space or an encoder index pulse.
The Home input detects any transition in the state of the switch and toggles between logic states 0 and 1 at every
transition. A transition in the logic state of the Home input will cause the controller to execute a homing routine
specified by the user.
There are three homing routines supported by the DMC-40x0: Find Edge (FE), Find Index (FI), and Standard Home
(HM).
The Find Edge routine is initiated by the command sequence: FEX <return>, BGX <return>. The Find Edge routine
will cause the motor to accelerate, and then slew at constant speed until a transition is detected in the logic state of
the Home input. The direction of the FE motion is dependent on the state of the home switch. High level causes
forward motion. The motor will then decelerate to a stop. The acceleration rate, deceleration rate and slew speed
are specified by the user, prior to the movement, using the commands AC, DC, and SP.
When using the FE
command, it is recommended that a high deceleration value be used so the motor will decelerate rapidly after
sensing the Home switch.
The Find Index routine is initiated by the command sequence: FIX <return>, BGX <return>. Find Index will cause
the motor to accelerate to the user-defined slew speed (SP) at a rate specified by the user with the AC command and
slew until the controller senses a change in the index pulse signal from low to high. The motor then decelerates to a
stop at the rate previously specified by the user with the DC command and then moves back to the index pulse and
speed HV. Although Find Index is an option for homing, it is not dependent upon a transition in the logic state of
the Home input, but instead is dependent upon a transition in the level of the index pulse signal.
The Standard Homing routine is initiated by the sequence of commands HMX <return>, BGX <return>. Standard
Homing is a combination of Find Edge and Find Index homing. Initiating the standard homing routine will cause
the motor to slew until a transition is detected in the logic state of the Home input. The motor will accelerate at the
rate specified by the command, AC, up to the slew speed. After detecting the transition in the logic state on the
Home Input, the motor will decelerate to a stop at the rate specified by the command, DC. After the motor has
decelerated to a stop, it switches direction and approaches the transition point at the speed of HV counts/sec. When
the logic state changes again, the motor moves forward (in the direction of increasing encoder count) at the same
speed, until the controller senses the index pulse. After detection, it decelerates to a stop, moves back to the index,
and defines this position as 0. The logic state of the Home input can be interrogated with the command MG_HMX.
This command returns a 0 or 1 if the logic state is low or high, respectively. The state of the Home input can also be
interrogated indirectly with the TS command.
For examples and further information about Homing, see command HM, FI, FE of the Command Reference and the
section entitled Homing in the Programming Motion Section of this manual.
Abort Input
The function of the Abort input is to immediately stop the controller upon transition of the logic state.
NOTE:
The response of the abort input is significantly different from the response of an activated limit switch.
When the abort input is activated, the controller stops generating motion commands immediately, whereas the limit
switch response causes the controller to make a decelerated stop.
NOTE:
The effect of an Abort input is dependent on the state of the off-on-error function for each axis. If the Off-
On-Error function is enabled for any given axis, the motor for that axis will be turned off when the abort signal is
generated. This could cause the motor to ‘coast’ to a stop since it is no longer under servo control. If the Off-On-
Error function is disabled, the motor will decelerate to a stop as fast as mechanically possible and the motor will
remain in a servo state.
All motion programs that are currently running are terminated when a transition in the Abort input is detected. This
can be configured with the CN command. For information see the Command Reference, OE and CN.
Chapter 3 Connecting Hardware
•
33
DMC-40x0 User Manual
Содержание DMC-4040
Страница 17: ...DMC 4080 Layout Figure 2 2 Outline of the of the DMC 4080 DMC 40x0 User Manual Chapter 2 Getting Started 8...
Страница 19: ...DMC 4040 Dimensions Figure 2 5 Dimensions of DMC 4040 DMC 40x0 User Manual Chapter 2 Getting Started 10...
Страница 20: ...DMC 4080 Dimensions Figure 2 6 Dimensions of DMC 4080 Chapter 2 Getting Started 11 DMC 40x0 User Manual...
Страница 54: ...Chapter 3 Connecting Hardware 45 DMC 40x0 User Manual...
Страница 55: ...DMC 40x0 User Manual Chapter 3 Connecting Hardware 46...
Страница 56: ...Chapter 3 Connecting Hardware 47 DMC 40x0 User Manual...
Страница 73: ...Figure 4 1 GalilTools DMC 40x0 User Manual Chapter 4 Software Tools and Communication 64...
Страница 185: ...THIS PAGE LEFT BLANK INTENTIONALLY DMC 40x0 User Manual Chapter 7 Application Programming 176...
Страница 205: ...THIS PAGE LEFT BLANK INTENTIONALLY DMC 40x0 User Manual Chapter 10 Theory of Operation 196...
Страница 220: ...Step 2 Remove ICM For DMC 4040 Proceed to Step 3 Configure Circuit Appendices 211 DMC 40x0 User Manual...
Страница 222: ...Step 2 Remove ICM s Appendices 213 DMC 40x0 User Manual...
Страница 232: ...DMC 4080 Steps 4 and 5 Step 4 Replace ICM s Appendices 223 DMC 40x0 User Manual...