background image

 

Power 160 Brushless Outrunner Instructions 

 

Thank you for purchasing the E-flite Power 160 Brushless Outrunner Motor.  The Power 160 is designed to deliver clean and quiet power equivalent to or surpassing the power of a 160-size  
2-stroke glow engine for sport and scale airplanes weighing 12- to 20-pounds (5.4- to 9-Kg), 3D airplanes up to 15-pounds (6.8-Kg), or models requiring up to 2700 watts of power.  It provides 
excellent power for the popular 27% scale aerobatic models such as the Hangar 9 Extra 260, scale performance for the Hangar 9 P-47D Thunderbolt 150 ARF, and extreme performance for 
models like the Hangar 9 Ultra Stick Lite. 

 
Power 160 Brushless Outrunner Features: 

• Equivalent to or surpassing the power of a 160-size 2-stroke glow engine for 12-20 lbs (5.4-9 Kg) airplanes 
• Ideal for 3D airplanes up to 15 lbs (6.8 Kg) 
• Ideal for models requiring up to 2700 watts of power 
• High torque, direct drive alternative to inrunner brushless motors  
• External rotor design for better cooling 
• Includes mount and mounting hardware 
• High quality construction with ball bearings and hardened 8mm steel shaft 
• Includes two 12mm prop shaft adapters tapped out for 10-32 threads  
 

Power 160 Specifications 

 

  

Diameter: 

63mm 

(2.50 

in)      

Case Length: 64mm (2.50 in) 

 

 

 

Weight: 650g (23.0oz) 

 

Shaft Diameter: 8mm (.30 in) (Includes two 12mm prop shaft adapters) 

 

 

EFLM4160A 

Kv: 245 (rpms per volt) 
Io: 1.45A @ 10V (no load current)

 

Ri: .03 ohms (resistance) 
Continuous Current: 60A* 
Max Burst Current: 78A* 
Watts: up to 2700 
Cells: 28-32 NiMh/NiCd or 9S-10S LiPo 
Recommended Props: 18x8 - 20x10  
Brushless ESC: 85-110A High Voltage 
 
* Maximum Operating Temperature: 220 degrees Fahrenheit        
* Adequate cooling is required for all motor operation at maximum current levels.  
* Maximum Burst Current duration is 15 seconds.  Adequate time between maximum burst intervals is required for proper cooling and to avoid overheating the motor.   
* Maximum Burst Current rating is for 3D and limited motor run flights.  Lack of proper throttle management may result in damage to the motor since excessive use of burst current may 
overheat the motor.   
 

Determine a Model’s Power Requirements: 

1. Power can be measured in watts.  For example: 1 horsepower = 746 watts 
2. You determine watts by multiplying ‘volts’ times ‘amps’.  Example: 10 volts x 10 amps = 100 watts

 

 

Volts x Amps = Watts 

 
3. You can determine the power requirements of a model based on the ‘Input Watts Per Pound’ guidelines found below, using the flying weight of the model (with battery): 
 

 

50-70 watts per pound; Minimum level of power for decent performance, good for lightly loaded slow flyer and park flyer models 

 

70-90 watts per pound; Trainer and slow flying scale models 

 

90-110 watts per pound; Sport aerobatic and fast flying scale models 

 

110-130 watts per pound; Advanced aerobatic and high-speed models 

 

130-150 watts per pound; Lightly loaded 3D models and ducted fans 

 

150-200+ watts per pound; Unlimited performance 3D and aerobatic models 

 
NOTE: These guidelines were developed based upon the typical parameters of our E-flite motors.  These guidelines may vary depending on other motors and factors such as efficiency and 
prop size. 
 
4. Determine the Input Watts Per Pound required to achieve the desired level of performance: 
 
Model: 27% Extra 260 ARF 
Estimated Flying Weight w/Battery: 15.3 lbs 
Desired Level of Performance: 150-200+ watts per pound; Unlimited performance 3D and aerobatics 
 
 

15.3 lbs x 150 watts per pound = 2,295 Input Watts of total power (minimum) 

                required to achieve the desired performance 

 

5. Determine a suitable motor based on the model’s power requirements.  The tips below can help you determine the power capabilities of a particular motor and if it can provide the power your 
model requires for the desired level of performance: 
 

 

Most manufacturers will rate their motors for a range of cell counts, continuous current and maximum burst current. 

 

In most cases, the input power a motor is capable of handling can be determined by: 
 

Average Voltage (depending on cell count) x Continuous Current = Continuous Input Watts 
 
Average Voltage (depending on cell count) x Max Burst Current = Burst Input Watts 

  

HINT: The typical average voltage under load of a Ni-Cd/Ni-MH cell is 1.0 volt.  The typical average voltage under load of a Li-Po cell is 3.3 volts.  This means the typical average voltage under 
load of a 10 cell Ni-MH pack is approximately 10 volts and a 3 cell Li-Po pack is approximately 9.9 volts.  Due to variations in the performance of a given battery, the average voltage under load 
may be higher or lower.  These however are good starting points for initial calculations.  
 
Model: 27% Extra 260 ARF (converted to electric) 
Estimated Flying Weight w/Battery: 15.3 lbs 
Total Input Watts Required for Desired Performance: 2,295 (minimum) 
 
Motor: Power 160 
Max Continuous Current: 60A* 
Max Burst Current: 78A* 
Cells (Li-Po): 10 
 

10 Cells, Continuous Power Capability: 33 Volts (10 x 3.3) x 60 Amps = 1,980 Watts 

 

10 Cells, Max Burst Power Capability: 33 Volts (10 x 3.3) x 78 Amps = 2,574 Watts 

 
Per this example, the Power 160 motor (when using a 10S Li-Po pack) can handle up to 2,574 watts of input power, readily capable of powering the 
27% Extra 260 model with the desired level of performance (requiring 2,295 watts minimum).  You must however be sure that the battery chosen for power can adequately supply the current 
requirements of the system for the required performance. 

Содержание Power 160 Brushless Outrunner

Страница 1: ...rk flyer models 70 90 watts per pound Trainer and slow flying scale models 90 110 watts per pound Sport aerobatic and fast flying scale models 110 130 watts per pound Advanced aerobatic and high speed models 130 150 watts per pound Lightly loaded 3D models and ducted fans 150 200 watts per pound Unlimited performance 3D and aerobatic models NOTE These guidelines were developed based upon the typic...

Страница 2: ...tage ESC CSEPHX110HV Phoenix HV 110 High Voltage ESC Electronic Speed Controls There are many brushless electronic speed controls available in the market We have conducted our testing using Jeti Advance 90 Plus and the Castle Phoenix HV 85 and HV 110 ESCs The timing setting of the speed control is important for obtaining proper and maximum performance In the past some consumers have reported motor...

Страница 3: ...nding the motor further forward using aftermarket mount extensions when using cowls 1 You can first trial fit the aluminum x mount against the front of the firewall and use a Sharpie to mark the locations of four holes and drill appropriate size hole to fit the blind nuts provided Always be sure to maintain the proper thrust line and account for adequate prop spinner clearance 2 Attach aluminum x ...

Страница 4: ... must be operated with caution and common sense and requires some basic mechanical ability Failure to operate this Product in a safe and responsible manner could result in injury or damage to the Product or other property This Product is not intended for use by children without direct adult supervision The Product manual contains instructions for safety operation and maintenance It is essential to...

Отзывы: