to the initial query before sending a second one is the last member query interval (LMQI). The switch
waits one LMQI after the second query before removing the group from the state table.
• Adjust the period between queries.
INTERFACE mode
ip igmp query-interval
• Adjust the maximum response time.
INTERFACE mode
ip igmp query-max-resp-time
• Adjust the last member query interval.
INTERFACE mode
ip igmp last-member-query-interval
Enabling IGMP Immediate-Leave
If the querier does not receive a response to a group-specific or group-and-source query, it sends
another (querier robustness value). Then, after no response, it removes the group from the outgoing
interface for the subnet.
IGMP immediate leave reduces leave latency by enabling a router to immediately delete the group
membership on an interface after receiving a Leave message (it does not send any group-specific or
group-and-source queries before deleting the entry).
• Configure the system for IGMP immediate leave.
ip igmp immediate-leave
• View the enable status of the IGMP immediate leave feature.
EXEC Privilege mode
show ip igmp interface
View the enable status of this feature using the command from EXEC Privilege mode, as shown in the
example in
IGMP Snooping
IGMP snooping enables switches to use information in IGMP packets to generate a forwarding table that
associates ports with multicast groups so that when they receive multicast frames, they can forward them
only to interested receivers.
Multicast packets are addressed with multicast MAC addresses, which represent a group of devices, rather
than one unique device. Switches forward multicast frames out of all ports in a virtual local area network
(VLAN) by default, even though there may be only some interested hosts, which is a waste of bandwidth.
If you enable IGMP snooping on a VLT unit, IGMP snooping dynamically learned groups and multicast
router ports are made to learn on the peer by explicitly tunneling the received IGMP control packets.
416
Internet Group Management Protocol (IGMP)
Содержание S4820T
Страница 1: ...Dell Configuration Guide for the S4820T System 9 8 0 0 ...
Страница 282: ...Dell 282 Control Plane Policing CoPP ...
Страница 569: ...Figure 62 Inspecting Configuration of LAG 10 on ALPHA Link Aggregation Control Protocol LACP 569 ...
Страница 572: ...Figure 64 Inspecting a LAG Port on BRAVO Using the show interface Command 572 Link Aggregation Control Protocol LACP ...
Страница 573: ...Figure 65 Inspecting LAG 10 Using the show interfaces port channel Command Link Aggregation Control Protocol LACP 573 ...
Страница 617: ...mac address table static multicast mac address vlan vlan id output range interface Microsoft Network Load Balancing 617 ...
Страница 622: ...Figure 81 Configuring Interfaces for MSDP 622 Multicast Source Discovery Protocol MSDP ...
Страница 623: ...Figure 82 Configuring OSPF and BGP for MSDP Multicast Source Discovery Protocol MSDP 623 ...
Страница 624: ...Figure 83 Configuring PIM in Multiple Routing Domains 624 Multicast Source Discovery Protocol MSDP ...
Страница 629: ...Figure 86 MSDP Default Peer Scenario 2 Multicast Source Discovery Protocol MSDP 629 ...
Страница 630: ...Figure 87 MSDP Default Peer Scenario 3 630 Multicast Source Discovery Protocol MSDP ...
Страница 751: ...10 11 5 2 00 00 05 00 02 04 Member Ports Te 1 2 1 PIM Source Specific Mode PIM SSM 751 ...
Страница 905: ...Figure 112 Single and Double Tag First byte TPID Match Service Provider Bridging 905 ...
Страница 979: ...6 Member not present 7 Member not present Stacking 979 ...
Страница 981: ...storm control Storm Control 981 ...
Страница 999: ... Te 1 1 0 INCON Root Rootguard Te 1 2 0 LIS Loopguard Te 1 3 0 EDS Shut Bpduguard Spanning Tree Protocol STP 999 ...
Страница 1103: ...Figure 134 Setup OSPF and Static Routes Virtual Routing and Forwarding VRF 1103 ...