background image

72-Mbit DDR-II SRAM 2-Word

Burst Architecture

CY7C1516KV18, CY7C1527KV18
CY7C1518KV18, CY7C1520KV18

Cypress Semiconductor Corporation

198 Champion Court

San Jose

,

CA 95134-1709

408-943-2600

Document Number: 001-00437 Rev. *E

 Revised March 30, 2009

Features

72-Mbit Density (8M x 8, 8M x 9, 4M x 18, 2M x 36)

333 MHz Clock for High Bandwidth

2-word Burst for reducing Address Bus Frequency 

Double Data Rate (DDR) Interfaces 

(data transferred at 666 MHz) at 333 MHz 

Two Input Clocks (K and K) for precise DDR Timing

SRAM uses rising edges only

Two Input Clocks for Output Data (C and C) to minimize Clock 

Skew and Flight Time mismatches

Echo Clocks (CQ and CQ) simplify Data Capture in High Speed 

Systems

Synchronous Internally Self-timed Writes

DDR-II operates with 1.5 Cycle Read Latency when DOFF is 

asserted HIGH

Operates similar to DDR-I Device with 1 Cycle Read Latency 

when DOFF is asserted LOW

1.8V Core Power Supply with HSTL Inputs and Outputs

Variable Drive HSTL Output Buffers

Expanded HSTL Output Voltage (1.4V–V

DD

)

Supports both 1.5V and 1.8V IO supply

Available in 165-Ball FBGA Package (13 x 15 x 1.4 mm)

Offered in both Pb-free and non Pb-free Packages

JTAG 1149.1 compatible Test Access Port

Phase Locked Loop (PLL) for Accurate Data Placement

Configurations

CY7C1516KV18 – 8M x 8
CY7C1527KV18 – 8M x 9
CY7C1518KV18 – 4M x 18
CY7C1520KV18 – 2M x 36

Functional Description

The CY7C1516KV18, CY7C1527KV18, CY7C1518KV18, and

CY7C1520KV18 are 1.8V Synchronous Pipelined SRAM

equipped with DDR-II architecture. The DDR-II consists of an

SRAM core with advanced synchronous peripheral circuitry and

a 1-bit burst counter. Addresses for read and write are latched

on alternate rising edges of the input (K) clock. Write data is

registered on the rising edges of both K and K. Read data is

driven on the rising edges of C and C if provided, or on the rising

edge of K and K if C/C are not provided. Each address location

is associated with two 8-bit words in the case of CY7C1516KV18

and two 9-bit words in the case of CY7C1527KV18 that burst

sequentially into or out of the device. The burst counter always

starts with a “0” internally in the case of CY7C1516KV18 and

CY7C1527KV18. On CY7C1518KV18 and CY7C1520KV18, the

burst counter takes in the least significant bit of the external

address and bursts two 18-bit words in the case of

CY7C1518KV18 and two 36-bit words in the case of

CY7C1520KV18 sequentially into or out of the device.
Asynchronous inputs include an output impedance matching

input (ZQ). Synchronous data outputs (Q, sharing the same

physical pins as the data inputs D) are tightly matched to the two

output echo clocks CQ/CQ, eliminating the need for separately

capturing data from each individual DDR SRAM in the system

design. Output data clocks (C/C) enable maximum system

clocking and data synchronization flexibility.
All synchronous inputs pass through input registers controlled by

the K or K input clocks. All data outputs pass through output

registers controlled by the C or C (or K or K in a single clock

domain) input clocks. Writes are conducted with on-chip

synchronous self-timed write circuitry.

Table 1.  Selection Guide

Description

 333 MHz

 300 MHz

 250 MHz

 200 MHz

 167 MHz

Unit

Maximum Operating Frequency 

333

300

250

200

167

MHz

Maximum Operating Current 

x8

510

480

420

370

340

mA

x9

510

480

420

370

340

x18

520

490

430

380

340

x36

640

600

530

450

400

[+] Feedback 

Содержание CY7C1516KV18

Страница 1: ...a 1 bit burst counter Addresses for read and write are latched on alternate rising edges of the input K clock Write data is registered on the rising edges of both K and K Read data is driven on the r...

Страница 2: ...egister Read Add Decode Read Data Reg R W Output Logic Reg Reg Reg 8 16 8 NWS 1 0 VREF Write Add Decode 8 22 C C 8 LD Control R W DOFF 4M x 8 Array 4M x 8 Array 8 DQ 7 0 8 CQ CQ Write Reg Write Reg CL...

Страница 3: ...eg R W Output Logic Reg Reg Reg 18 36 18 BWS 1 0 VREF Write Add Decode 18 22 C C 18 LD Control Burst Logic A0 A 21 1 R W DOFF 2M x 18 Array 2M x 18 Array 21 18 DQ 17 0 18 CQ CQ Write Reg Write Reg CLK...

Страница 4: ...NC VDDQ VSS VSS VSS VDDQ NC NC DQ0 M NC NC NC VSS VSS VSS VSS VSS NC NC NC N NC NC NC VSS A A A VSS NC NC NC P NC NC DQ7 A A C A A NC NC NC R TDO TCK A A A C A A A TMS TDI CY7C1527KV18 8M x 9 1 2 3 4...

Страница 5: ...A A NC NC DQ0 R TDO TCK A A A C A A A TMS TDI CY7C1520KV18 2M x 36 1 2 3 4 5 6 7 8 9 10 11 A CQ NC 144M A R W BWS2 K BWS1 LD A A CQ B NC DQ27 DQ18 A BWS3 K BWS0 A NC NC DQ8 C NC NC DQ28 VSS A A0 A VS...

Страница 6: ...onous Address Inputs These address inputs are multiplexed for both read and write operations Internally the device is organized as 8M x 8 2 arrays each of 4M x 8 for CY7C1516KV18 and 8M x 9 2 arrays e...

Страница 7: ...cannot be connected directly to GND or left unconnected DOFF Input PLL Turn Off Active LOW Connecting this pin to ground turns off the PLL inside the device The timing in the PLL turned off operation...

Страница 8: ...ounter increments the address in a linear fashion On the following K clock rise the data presented to D 17 0 is latched and stored into the 18 bit write data register provided BWS 1 0 are both asserte...

Страница 9: ...th respect to K and CQ is generated with respect to K The timing for the echo clocks is shown in the Switching Characteristics on page 23 PLL These chips use a PLL that is designed to function between...

Страница 10: ...er byte D 8 0 is written into the device D 17 9 remains unaltered H L L H During the data portion of a write sequence CY7C1516KV18 only the upper nibble D 7 4 is written into the device D 3 0 remains...

Страница 11: ...into the device D 35 9 remains unaltered L H H H L H During the data portion of a write sequence only the lower byte D 8 0 is written into the device D 35 9 remains unaltered H L H H L H During the da...

Страница 12: ...e falling edge of TCK Instruction Register Three bit instructions are serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in T...

Страница 13: ...egister After the data is captured it is possible to shift out the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD places an...

Страница 14: ...ontroller follows 9 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 SELECT IR S...

Страница 15: ...t HIGH Voltage 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 A 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 108 0 1 2 I...

Страница 16: ...tTDIH TDI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns TAP Timing and Test Conditions...

Страница 17: ...Instruction Codes Instruction Code Description EXTEST 000 Captures the input and output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and T...

Страница 18: ...L 7 8P 35 10E 63 2A 91 3L 8 9R 36 10D 64 1A 92 1M 9 11P 37 9E 65 2B 93 1L 10 10P 38 10C 66 3B 94 3N 11 10N 39 11D 67 1C 95 3M 12 9P 40 9C 68 1B 96 1N 13 10M 41 9D 69 3D 97 2M 14 11N 42 11B 70 3C 98 3P...

Страница 19: ...and clock K K for 20 s to lock the PLL PLL Constraints PLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The PLL functions at frequencies d...

Страница 20: ...V VOH Output HIGH Voltage Note 16 VDDQ 2 0 12 VDDQ 2 0 12 V VOL Output LOW Voltage Note 17 VDDQ 2 0 12 VDDQ 2 0 12 V VOH LOW Output HIGH Voltage IOH 0 1 mA Nominal Impedance VDDQ 0 2 VDDQ V VOL LOW Ou...

Страница 21: ...tic 333 MHz x8 290 mA x9 290 x18 290 x36 290 300 MHz x8 280 mA x9 280 x18 280 x36 280 250 MHz x8 270 mA x9 270 x18 270 x36 270 200 MHz x8 250 mA x9 250 x18 250 x36 250 167 MHz x8 250 mA x9 250 x18 250...

Страница 22: ...ient Test conditions follow standard test methods and procedures for measuring thermal impedance in accordance with EIA JESD51 13 7 C W JC Thermal Resistance Junction to Case 3 73 C W Figure 4 AC Test...

Страница 23: ...to K Clock Rise 0 4 0 4 0 5 0 6 0 7 ns tSC tIVKH Control Setup to K Clock Rise LD R W 0 4 0 4 0 5 0 6 0 7 ns tSCDDR tIVKH Double Data Rate Control Setup to Clock K K Rise BWS0 BWS1 BWS2 BWS3 0 3 0 3...

Страница 24: ...Z Clock C C Rise to High Z Active to High Z 24 25 0 45 0 45 0 45 0 45 0 50 ns tCLZ tCHQX1 Clock C C Rise to Low Z 24 25 0 45 0 45 0 45 0 45 0 50 ns PLL Timing tKC Var tKC Var Clock Phase Jitter 0 20 0...

Страница 25: ...KHKH tKL tCYC A0 D20 D21 D30 D31 Q00 Q11 Q01 Q10 A1 A2 A3 A4 Q41 tCCQO tCQOH tCCQO tCQOH tKL tCYC K K LD R W A DQ C C CQ CQ SA tKH tKHKH tCQD tCQDOH tCQH tCQHCQH Notes 26 Q00 refers to output from add...

Страница 26: ...13 x 15 x 1 4 mm Commercial CY7C1527KV18 333BZC CY7C1518KV18 333BZC CY7C1520KV18 333BZC CY7C1516KV18 333BZXC 51 85180 165 Ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Pb Free CY7C1527KV18 333BZXC...

Страница 27: ...ay 13 x 15 x 1 4 mm Pb Free CY7C1527KV18 250BZXI CY7C1518KV18 250BZXI CY7C1520KV18 250BZXI 200 CY7C1516KV18 200BZC 51 85180 165 Ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Commercial CY7C1527KV18...

Страница 28: ...rray 13 x 15 x 1 4 mm Pb Free CY7C1527KV18 167BZXC CY7C1518KV18 167BZXC CY7C1520KV18 167BZXC CY7C1516KV18 167BZI 51 85180 165 Ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Industrial CY7C1527KV18 1...

Страница 29: ...A B 0 05 M C B A 0 15 4X 0 35 0 06 SEATING PLANE 0 53 0 05 0 25 C 0 15 C PIN 1 CORNER TOP VIEW BOTTOM VIEW 2 3 4 5 6 7 8 9 10 10 00 14 00 B C D E F G H J K L M N 11 11 10 9 8 6 7 5 4 3 2 1 P R P R K M...

Страница 30: ...RCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE Cypress reserves the right to make changes without further notice to the materials described herein Cypress does not assume any liability arising out...

Отзывы: