
Page 11
3-11
Installation & Operation Manual
Thermistors
Badger Meter thermistors are not polarity-sensitive, therefore, wire color is unimportant. The thermistor located in the same
pipe as the flow sensor, termed temperature sensor T1, should be connected to terminals 2 and 3 on terminal block Temp 1.
The thermistor located other pipe, termed temperature sensor T2, should be connected to terminals 2 and 3 on terminal block
Temp 2. As shown in the thermistor wiring diagram, a jumper must be installed between terminals 1 and 3 for both the T1
and T2 input terminals. These terminals 1 and 3 are used for lead resistance compensation when 100 three wire RTDs are used,
and must be jumpered when not used.
1
2
3
Temp
1
1
3
Temp
2
2
10K
Ω
T2
T1
Supply
Return
Thermistors
Jumpers
Figure 10: Thermistor Wiring Diagram
Resistance Temperature Detectors (RTDs)
Badger Meter RTDs are three-wire devices. Two of the wires are the same color, and interchangeable. One wire is current-
carrying and connects to terminal #3, and the other is used for lead compensation and is connected to terminal #1. The
single color lead is attached to terminal 2. The RTD located in the same pipe as the flow sensor, termed temperature sensor T1,
should be connected to terminal block Temp 1. The RTD located in the other pipe line, termed temperature sensor T2, should
be connected to terminal block Temp 2.
1
2
3
Temp
1
1
3
Temp
2
2
100
Ω
RTDs or 1000
Ω
RTDs
T2
T1
Supply
Return
Figure 11: RTD Wiring Diagram
Pulse Output Wiring
The Badger Meter Series 340 BN/MB has solid state switch output rated for a maximum sinking current of 100 mA @ 36V
DC. In most cases the pulse out (+) terminal of the Series 340 BN/MB will connect to the input pulse (+) and the pulse out (-)
terminal to the input pulse (-) of the receiving device. Although l/-, the pulse output is not actually polarity sensitive,
and can switch low level AC loads if required.
These terminals are located on a separate two terminal removable header on the Series 340 BN/MB labeled “Output”.