132
XMEGA B [DATASHEET]
8291B–AVR–01/2013
12.5
Input Sense Configuration
Input sensing is used to detect an edge or level on the I/O pin input. The different sense configurations that are available
for each pin are detection of a rising edge, falling edge, or any edge or detection of a low level. High level can be
detected by using the inverted input configuration. Input sensing can be used to trigger interrupt requests (IREQ) or
events when there is a change on the pin.
The I/O pins support synchronous and asynchronous input sensing. Synchronous sensing requires the presence of the
peripheral clock, while asynchronous sensing does not require any clock.
Figure 12-9. Input sensing.
12.6
Port Interrupt
Each port has two interrupt vectors, and it is configurable which pins on the port will trigger each interrupt. Port interrupts
must be enabled before they can be used. Which sense configurations can be used to generate interrupts is dependent
on whether synchronous or asynchronous input sensing is available for the selected pin.
For synchronous sensing, all sense configurations can be used to generate interrupts. For edge detection, the changed
pin value must be sampled once by the peripheral clock for an interrupt request to be generated.
For asynchronous sensing, only port pin 2 on each port has full asynchronous sense support. This means that for edge
detection, pin 2 will detect and latch any edge and it will always trigger an interrupt request. The other port pins have
limited asynchronous sense support. This means that for edge detection, the changed value must be held until the device
wakes up and a clock is present. If the pin value returns to its initial value before the end of the device wake-up time, the
device will still wake up, but no interrupt request will be generated.
A low level can always be detected by all pins, regardless of a peripheral clock being present or not. If a pin is configured
for low-level sensing, the interrupt will trigger as long as the pin is held low. In active mode, the low level must be held
until the completion of the currently executing instruction for an interrupt to be generated. In all sleep modes, the low level
must be kept until the end of the device wake-up time for an interrupt to be generated. If the low level disappears before
the end of the wake-up time, the device will still wake up, but no interrupt will be generated.
,
, and
summarize when interrupts can be triggered for the various input
sense configurations.
D
Q
R
INVERTED I/O
Interrupt
Control
D
Q
R
Pxn
Synchronizer
INn
EDGE
DETECT
Synchronous sensing
EDGE
DETECT
Asynchronous sensing
IRQ
Synchronous
Events
Asynchronous
Events
Содержание XMEGA B
Страница 320: ...320 XMEGA B DATASHEET 8291B AVR 01 2013 Table 25 12 7 segments Character Table...
Страница 321: ...321 XMEGA B DATASHEET 8291B AVR 01 2013 Table 25 13 14 segments Character Table...
Страница 322: ...322 XMEGA B DATASHEET 8291B AVR 01 2013 Table 25 14 16 segments Character Table...
Страница 412: ...412 XMEGA B DATASHEET 8291B AVR 01 2013...
Страница 413: ...413 XMEGA B DATASHEET 8291B AVR 01 2013...
Страница 414: ...414 XMEGA B DATASHEET 8291B AVR 01 2013...