background image

1

the power button once. The
Bluetooth

®

LED will blink red.

4. Launch Graphical Analysis 4.
5. Click or tap Sensor Data

Collection.

6. Click or tap your Go Direct sensor

from the list of Discovered
Wireless Devices. Your sensor's ID
is located near the barcode on the
sensor. The Bluetooth LED will
blink green when it is successfully
connected.

7. This is a multi-channel sensor. The

active channel is listed in the
Connected Devices Sensor
Channels list. To change channels,
select the check box next to the
Sensor Channel(s) you would like
to activate.

8. Click or tap Done to enter

data-collection mode.

2. Connect the sensor to the USB port.
3. Launch Graphical Analysis 4 or turn

on LabQuest 2. You are now ready
to collect data.

4. This is a multi-channel sensor. To

change the default channel
selections, see
www.vernier.com/start/gdx-nrg

WARNING:

To avoid possible electric shock or personal injury, do not

connect the red or black leads to household power. This product is designed to
measure low-voltage sources such as classroom-scale wind turbines and small
solar panels. It should never be connected to an electrical outlet.

Charging the Sensor

Connect Go Direct Energy to the included USB Charging Cable and any USB
device for two hours.

You can also charge up to Go Direct Energy Sensors using our Go Direct
Charge Station, sold separately (order code: GDX-CRG). An LED on each
Go Direct Energy indicates charging status.

Charging

Orange LED next to the battery icon is solid
while the sensor is charging.

Fully charged

Green LED next to the battery icon is solid
when the sensor is fully charged.

Go Direct

®

Energy

(Order Code GDX-NRG)

Go Direct Energy measures the voltage
and current of a renewable energy
source. Connect a source, such as a small
wind turbine or solar panel, and Graphical Analysis 4 calculates the power,
resistance, and energy output.

Go Direct Energy is ideal for a wide variety of renewable energy experiments:

l

Investigate the electrical energy generated by a wind turbine or solar panel.

l

Explore the effect of load on wind turbine or solar panel output.

l

Test blade design variables and evaluate data to determine optimal blade
design.

Note:

Vernier products are designed for educational use. Our products are not

designed nor are they recommended for any industrial, medical, or commercial
process such as life support, patient diagnosis, control of a manufacturing
process, or industrial testing of any kind.

What's Included

l

Go Direct Energy

l

Micro USB Cable

Compatible Software

See

www.vernier.com/manuals/gdx-nrg

for a list of software compatible with the

Go Direct Energy.

Getting Started

1. Connect the Go Direct Energy red lead to the red wire of your energy source

(generator, solar panel, etc.).

2. Connect the Go Direct Energy black lead to the black wire of your source.
3. Make sure the Load switch is set to 30 Ω Load.

Please see the following link for platform-specific connection information:

www.vernier.com/start/gdx-nrg

Bluetooth Connection

USB Connection

1. Install Graphical Analysis 4 on

your computer, Chromebook™, or
mobile device. See
www.vernier.com/ga4 for software
availability.

2. Charge your sensor for at least

2 hours before first use.

3. Turn on your sensor by pressing

1. If using a computer or Chromebook,

install Graphical Analysis 4. If using
LabQuest 2, make sure LabQuest
App is up to date. See
www.vernier.com/ga4 for Graphical
Analysis 4 availability or
www.vernier.com/downloads to
update LabQuest App.

Summary of Contents for Go Direct Energy GDX-NRG

Page 1: ...GDX NRG Go Direct Energy measures the voltage and current of a renewable energy source Connect a source such as a small wind turbine or solar panel and Graphical Analysis 4 calculates the power resistance and energy output Go Direct Energy is ideal for a wide variety of renewable energy experiments l Investigate the electrical energy generated by a wind turbine or solar panel l Explore the effect ...

Page 2: ...e of the amount of opposition to the passage of an electric current The unit for resistance is ohm and is represented by the Greek letter capital omega Ω Using the Load Switch When the Load switch is set to Internal the load is an internal 30 Ω resistor inside the Energy sensor When the Load switch is set to External Load you Powering the Sensor Turning on the sensor Press the Power button once Re...

Page 3: ...pen the circuit In this case you will have to wait a few minutes for the fuse to reset itself before using Go Direct Energy again will need to connect an external load For example in several experiments students explore the effect of load on energy output Calibrating the Sensor The sensor is factory calibrated You should never have to perform a new calibration for Go Direct Energy Specifications S...

Page 4: ... this device must accept any interference received including interference that may cause undesired operation RF Exposure Warning The equipment complies with RF exposure limits set forth for an uncontrolled environment The antenna s used for this transmitter must not be co located or operating in conjunction with any other antenna or transmitter You are cautioned that changes or modifications not e...

Page 5: ...es applicables aux appareils numériques de Classe B prescrites dans la norme sur le matériel interférant brouilleur Appareils Numériques NMB 003 édictée par industrie Canada L utilisation est soumise aux deux conditions suivantes 1 cet appareil ne peut causer d interférences et 2 cet appareil doit accepter toutes interférences y comprises celles susceptibles de provoquer un disfonctionnement du di...

Reviews: