York MILLENIUM 351-46 Operating Instructions Manual Download Page 8

JOHNSON CONTROLS

8

FORM 160.00-O1 (1020)

to form a capacitor “bank”. In order to assure an equal sharing 

of the voltage between the series connected capacitors and 

to provide a discharge means for the capacitor bank when the 

VSD is powered off, “bleeder” resistors (3RES and 4RES) are 

connected across the capacitor banks. 

The DC to AC inverter

 section of the VSD (See Fig. 2), serves 

to convert the rectified and filtered DC back to AC at the mag

-

nitude and frequency commanded by the VSD Logic board. 

The inverter section is actually composed of three identical 

inverter output phase assemblies. These assemblies are in 

turn composed of a series of Insulated Gate Bipolar Transistor 

(IGBT) modules (Q1-Q4) mounted to a liquid cooled heatsink, a 

filter capacitor “bank” (C13-C20)  and a VSD Gate Driver board 

(031-01476) which provides the On and Off gating pulses to 

the IGBT’s as determined by the VSD Logic board. In order 

to minimize the parasitic inductance between the IGBT’s and 

the capacitor banks, copper plates which electrically connect 

the capacitors to one another and to the IGBT’s are connected 

together using a “laminated bus” structure. This “laminated 

bus” structure is a actually composed of a pair of copper bus 

plates with a thin sheet of insulating material acting as the 

separator/insulator. The “laminated bus” structure forms a 

parasitic capacitor which acts as a small valued capacitor, 

effectively canceling the parasitic inductance of the busbars 

themselves. To further cancel the parasitic inductances, a se-

ries of small film capacitors (C43-C51) are connected between 

the positive and negative plates of the DC link. To provide 

electrical shielding for the VSD Gate Driver board, an IGBT  

driver “shield board” (031-01627) is mounted just beneath the 

VSD Gate Driver board.

The VSD output suppression

 network is composed of a 

series of capacitors (C61-C66) and resistors (5RES-10RES) 

connected in a three phase delta configuration. The param

-

eters of the suppression network components are chosen 

to work in unison with the parasitic inductance of the DC to 

AC inverter sections in order to simultaneously limit both the 

rate of change of voltage and the peak voltage applied to 

the motor windings. By limiting the peak voltage to the motor 

windings, as well as the rate-of-change of motor voltage, we 

can avoid problems commonly associated with PWM motor 

drives, such as stator-winding end-turn failures and electrical 

fluting of motor bearings. 

Various ancillary sensors and boards are used to convey 

information back to the VSD Logic board. Each liquid cooled 

heatsink within the DC to AC inverter section contains a 

thermistor heatsink temperature sensor (RT1 - RT3) to provide 

temperature information to the VSD logic board. The AC to 

DC semi-converter heatsink temperature is also monitored 

using thermistor temperature sensor RT4. The Bus Isolator 

board (031-01624) utilizes three resistors on the board to 

provide a “safe” impedance between the DC link filter capac

-

itors located on the output phase bank assemblies and the 

VSD logic board. It provides the means to sense the positive, 

midpoint and negative connection points of the VSD’s DC link. 

A Current Transformer (3T - 5T) is included on each output 

phase assembly to provide motor current information to the 

VSD logic board. 

Harmonic Filter Option

The VSD system may also include an optional harmonic filter 

designed to meet the IEEE Std 519 -1992, “IEEE Recom-

mended Practices and Requirements for Harmonic Control 

in Electrical Power Systems”. The filter is offered as a means 

to “clean up” the input current waveform drawn by the VSD 

from the power mains, thus reducing the possibility of causing 

electrical interference with other sensitive electronic equipment 

connected to the same power source.  

Figure 3A is a plot of the typical input current waveform for 

the VSD system without the optional filter when the system 

is operating at 50% load. Figure 3B is a plot of the typical 

input current waveform for the VSD system with the optional 

harmonic  filter  installed  when  operating  at  the  same  load 

conditions. The plots show that the input current waveform 

is converted from a square wave to a fairly clean sinusoidal 

waveform  when the filter is installed. In addition, the power 

factor of the system with the optional filter installed corrects 

the system power factor to nearly unity.

The power section of the Harmonic Filter is composed of four 

major blocks:  a pre-charge section, a “trap” filter network, 

a three phase inductor and an IGBT Phase Bank Assembly 

(See Fig. 4).

The pre-charge section 

is formed by three resistors (11RES 

- 13RES) and two contactors, pre-charge contactor 2M, and 

supply contactor 3M. The pre-charge network serves two pur-

poses, to slowly charge the DC link filter capacitors associated 

with the filter Phase Bank Assembly (via the diodes within the 

IGBT modules Q13-Q18) and to provide a means of discon-

necting the filter power components from the power mains. 

When the drive is turned off, both contactors are dropped out 

and the filter phase bank assembly is disconnected from the 

mains. When the drive is commanded to run, the pre-charge 

resistors are switched into the circuit via contactor 2M for a 

fixed time period of 5 seconds. This permits the filter capac

-

itors in the phase bank assembly to slowly charge. After the 

5 second time period,  the supply contactor is pulled in and 

the pre-charge contactor is dropped out, permitting the filter 

Phase Bank Assembly to completely charge to the peak of the 

input power mains. Three power fuses (11FU -13FU) connect 

the filter power components to the power mains. Very fast 

semiconductor power fuses are utilized to ensure that the 

IGBT modules do not rupture if a catastrophic 

failure were to 

Summary of Contents for MILLENIUM 351-46

Page 1: ...T YK chillers furnished with an optional Variable Speed Drive VSD TABLE OF CONTENTS VSD Style Variations 2 VSD Unit and Harmonic Filter Component Overview 2 VSD Control System Overview 7 Control Panel...

Page 2: ...cument and any referenced materials This in dividual shall also be familiar with and comply with all applicable industry and governmental standards and regulations pertaining to the task in question S...

Page 3: ...any work on the chiller REVISION NOTES Revisions made to this document are indicated in the following table These revisions are to technical information and any other changes in spelling grammar or f...

Page 4: ...er section a three phase DC to AC inverter section and an output suppression network The AC to DC rectifier utilizes a semi converter formed by the connection of three SCR diode modules 1SCR 3SCR in a...

Page 5: ...FORM 160 00 O1 1020 JOHNSON CONTROLS 5 THIS PAGE INTENTIONALLY LEFT BLANK...

Page 6: ...JOHNSON CONTROLS 6 FORM 160 00 O1 1020...

Page 7: ...FORM 160 00 O1 1020 JOHNSON CONTROLS 7...

Page 8: ...sink temperature is also monitored using thermistor temperature sensor RT4 The Bus Isolator board 031 01624 utilizes three resistors on the board to provide a safe impedance between the DC link filter...

Page 9: ...FORM 160 00 O1 1020 JOHNSON CONTROLS 9 FIG 3A VSD INPUT CURRENT WITHOUT FILTER FIG 3B VSD INPUT CURRENT WITH FILTER LD02727 LD02726...

Page 10: ...capacitors located on the phase bank assembly and the Filter logic board It provides the means to sense the positive midpoint and negative connection points of the filter s DC link VSD CONTROL SYSTEM...

Page 11: ...FORM 160 00 O1 1020 JOHNSON CONTROLS 11 THIS PAGE INTENTIONALLY LEFT BLANK...

Page 12: ...JOHNSON CONTROLS 12 FORM 160 00 O1 1020 FIG 4 IEEE 519 FILTER OPTION...

Page 13: ...FORM 160 00 O1 1020 JOHNSON CONTROLS 13 LD02725...

Page 14: ...f the VSD s cooling fans and pumps control of the pre charge contactor control of the semi converter gating and generation of the PWM firing pulses which are sent to the VSD gate driver and ultimately...

Page 15: ...tz When the Filter is present these additional lines are available by scrolling INPUT KVA ___ TOTAL PWR FACTOR ____ INPUT V AB ___V BC ___V CA ___V INPUT CURR A ___A B ___A C ___A INPUT V THD A ___ B...

Page 16: ...the vanes hit 100 If there is an increase in load while at this point the ACC will increase speed until the vanes are at 95 The ACC will then be allowed to continue to optimize the speed and vanes Su...

Page 17: ...cur rent exceeds a given limit The motor current is sensed by the Current Transformers on the VSD output pole assemblies and the signals are sent to the VSD logic board for processing Maximum instant...

Page 18: ...apacitors are wired in series to achieve a 900 VDC capability for the DC link It is important that the voltage be shared equally from the junction of the center or series capacitor con nection to the...

Page 19: ...two microprocessors on the VSD logic board Message RUN RELAY FAULT Redundant run signals are generated by the Micropanel one via wire 24 and the second via the serial communica tions link Upon receip...

Page 20: ...particular shutdown and its accompany ing message is generated if the filter s DC link voltage drops to a level less than 60 VDC below the filter DC link voltage setpoint The filter DC link voltage se...

Page 21: ...DD level of 8 or less for the VSD system Astandard VSD less the optional filter typically has an input current TDD level on the order of 28 30 Message WARNING FILTER DATA LOSS This message is displaye...

Page 22: ...age was intended as a check of the 519 logic board s internal triangle waveform generator However the accuracy of the measuring circuit on the board can have as much error as the generator it is tryin...

Page 23: ...FORM 160 00 O1 1020 JOHNSON CONTROLS 23 NOTES...

Page 24: ...ennsylvania USA 17349 1 800 524 1330 Subject to change without notice Printed in USA Copyright by Johnson Controls 2020 www johnsoncontrols com ALL RIGHTS RESERVED Form 160 00 O1 1020 Issue Date Octob...

Reviews: