background image

© 2023

www.teamWavelength.com

7

WHY5640 TEMPERATURE CONTROLLER

SAFETY INFORMATION  

SAFE OPERATING AREA — DO NOT EXCEED 
INTERNAL POWER DISSIPATION LIMITS

!

To  ensure  safe  operation  of  the  WHY5640 

Thermoelectric Controller, it is imperative 

that  you  determine  that  the  unit  will  be 

operating within the internal heat dissipation 

Safe Operating Area (SOA).

Visit  the  Wavelength  Electronics  website  for  the  most 

accurate, up-to-date, and easy to use SOA calculator: 

www.teamwavelength.com/support/design-tools/soa-tc-calculator/

 

For  more  information  on  Safe  Operating  Area,  see  our 

Application Note 

AN-LDTC01: The Principle of the Safe 

Operating Area

 and our SOA video: 

How to use the Safe 

Operating Area (SOA) Calculator

.

PREVENT DAMAGE FROM ELECTROSTATIC 
DISCHARGE

Before  proceeding,  it  is  critical  that  you  take  precautions 

to  prevent  electrostatic  discharge  (ESD)  damage  to  the 

controller  and  your  load.  ESD  damage  can  result  from 

improper  handling  of  sensitive  electronics,  and  is  easily 

preventable with simple precautions.

For more information regarding ESD, see Application Note 

AN-LDTC06: Basics: Electrostatic Discharge (ESD).

We recommend that you always observe ESD precautions 

when handling the WHY5640 controller.

THERMAL MANAGEMENT KITS

The WHY5640 has many thermal management accessories. 

They include thermal washers, heatsinks, and fans. These 

products are available either as individual accessories, 

or  bundled  together  in  kits.  The  use  of  these  thermal 

management accessories helps ensure that the WHY5640 

will remain in the SOA during operation.

THEORY OF OPERATION

The WHY5640 is a analog Proportional, Integral (PI) control 

loop for use in thermoelectric or resistive heater temperature 

control applications. The WHY5640 maintains precision 

temperature regulation using an active resistor bridge circuit 

that operates directly with thermistors or RTD temperature 

sensors.

The  fundamental  operating  principle  is  that  the  controller 

adjusts  the  TEC  drive  current  in  order  to  change  the 

temperature of the sensor that is connected to the thermal 

load. The goal is to make the resistance of the sensor match 

the setpoint resistance, and then keep them equal in spite 

of changes to ambient conditions and variations in thermal 

load.

The controller measures the load temperature by the 

resistance of the sensor as well as the difference between 

resistances of the sensor and the setpoint resistor.

While the output is enabled the controller continuously 

compares the setpoint resistance and the actual sensor 

resistance. If there is a difference between the two values 

the controller adjusts the output current—thereby driving the 

TEC or heater to change temperature—until the difference 

is zero. 

Once  the  actual  sensor  resistance  equals  the  setpoint 

resistance,  the  controller  makes  minor  adjustments  to  the 

output current in order to keep the difference at zero. If the 

ambient  temperature  changes,  for  example,  the  controller 

will adjust the drive current accordingly. 

The controller includes features that help protect the load 

from  damage.  These  features  are  explained  in  detail  in 

Operating Instructions — Standalone on page 8

.

•  Current limit:

 

Independent heating and cooling current 

limits  avoid  over-driving  and  damaging  the  TEC  or 

heater.

•  External or Onboard temperature setpoint control:

 for 

prototyping and benchtop applications the temperature 

setpoint can be adjusted with the onboard trimpot on the 

evaluation board. When the controller is integrated into 

an automated control system, the temperature setpoint 

can be adjusted by an external voltage signal.

•  Local Enable on WHY5690 Evaluation Board:

  the 

controller can be configured so that the output is always 

on whenever power is applied to the unit.

•  Control loop:

  the controller employs a smart 

Proportional-Integrating control loop to adjust the drive 

current. 

Summary of Contents for WHY5640

Page 1: ...Supply Low Cost 0 005 C Stability typical Linear PI Temperature Control High 2 2 A Output Current Control Above and Below Ambient Master Booster Operation Temperature Setpoint Heat and Cool Current L...

Page 2: ...the Wavelength Electronics website for the most accurate up to date and easy to use SOA calculator www teamwavelength com support design tools soa tc calculator Figure 1 shows the pin layout and descr...

Page 3: ...electric Cooler TEC or resistive heater connected directly to Pin 9 and Pin 13 on the controller as shown in Figure 3 NOTE Use a max of 5 V power supply with the test load shown Values shown can simul...

Page 4: ...on for the sensor RT and setpoint RS resistors 8 VDD Control Electronics Supply Input Power supply input for the WHY5640 s internal control electronics Supply range input for this pin is 5 to 26 VDC 9...

Page 5: ...Negative Temperature Coefficient thermistors OUTPUTA provides the heating current to the TEC for NTC sensors Connect OUTPUTA to the positive thermoelectric terminal when using Positive Temperature Co...

Page 6: ...o Pin 13 Full Temp Range IS 100 mA VS 0 7 VS 0 5 V Compliance Voltage Pin 9 to Pin 13 Full Temp Range IS 1 A VS 1 2 VS 1 0 V Compliance Voltage Pin 9 to Pin 13 Full Temp Range IS 2 A VS 1 6 VS 1 4 V P...

Page 7: ...operates directly with thermistors or RTD temperature sensors The fundamental operating principle is that the controller adjusts the TEC drive current in order to change the temperature of the sensor...

Page 8: ...UCTIONS STANDALONE NECESSARY EQUIPMENT The following equipment is required to configure the WHY5640 for basic operation WHY5640 Temperature Controller Thermistor or other temperature sensor Peltier ty...

Page 9: ...6 7 Use one of the sensors in the sections listed below SENSOR SELECTION Select a temperature sensor that is responsive around the desired operating temperature The temperature sensor should produce...

Page 10: ...th reference to Pin 1 AGND If the setpoint resistor RS is larger than the RTD resistance RRTD then the control loop will produce a heating current since the temperature sensed by the RTD is below cool...

Page 11: ...alues can be fine tuned experimentally Start with component values from Table 5 and operate the temperature controller system to determine if the load temperature settling time is satisfactory If it i...

Page 12: ...to Pin 1 AGND with a 1 5 k resistor when using RTDs LM335 type and AD590 type temperature sensors with a resistive heater Connect the resistive heater to Pins 9 and 13 to operate INCREASING OUTPUT CU...

Page 13: ...OLLERS 3 WHY5640 CONTROLLERS 4 WHY5640 CONTROLLERS 5 WHY5640 CONTROLLERS CURRENT LIMIT SET RESISTOR K RA RB 0 0 0 0 0 1 60 0 1 0 2 0 3 0 4 0 5 1 69 0 2 0 4 0 6 0 8 1 0 1 78 0 3 0 6 0 9 1 2 1 5 1 87 0...

Page 14: ...ll be operating within the internalheat dissipation Safe Operating Area SOA STEP 1 INSTALL WHY5640 ON THE WHY5690 WITH HEATSINK AND FAN Match up the notch Figure 12 on the WHY5640 with the silkscreen...

Page 15: ...lectronics to use the WHY5690 with other sensors or ranges STEP 5 ATTACHING THE VDD AND VS POWER SUPPLIES Ensure that the controller can be safely operated by checking the SOA Calculator website The V...

Page 16: ...board toggle switch The output is enabled when the green ON LED indicator is lit NOTE Before enabling the output make sure the RUN SET switch is set to the RUN position When enabled with this switch i...

Page 17: ...an wire configuration may be different than shown Fan can be rotated on the WHY so the location of the wires matches custom PCB WHY5640 and WHY5690 assembly instructions Figure 15 Match up the notch s...

Page 18: ...perating thermistor resistance RT For example for a 10 k thermistor operating at 25 C choose R1 to be 20 k NOTE Pin 9 OUTA is the heating current sink and Pin 13 OUTB is the cooling current sink Figur...

Page 19: ...S given a desired operating temperature measured in Celsius Rs 2R3 0 5 273 15 TCelsius 1mV K 10 Resistor R3 is a fixed resistance value that can be used to scale or adjust the setpoint resistor RS Sel...

Page 20: ...2 W 3 Heatsink and 3 5CFM fan required 2 W PWHY 9 W 4 Unsafe Operating Area PWHY Power internally dissipated in the WHY5640 1 2 3 4 5 10 15 20 25 0 0 0 5 1 0 1 5 2 0 Voltage Drop Across WHY VS VLOAD V...

Page 21: ...VS VDD VS S1 SPST LIM B LIM A SGL TURN SGL TURN CCW 0 AMPS CW 2 AMPS SGL TURN P GAIN I TERM OUT A OUT B SENSOR SENSOR VM1 VM2 VDD VS PGND COMMON OUTA OUTB LIMB LIMA VM2 VM1 S S R8 1k R7 1k CCW 0 AMPS...

Page 22: ...ple at 25 C a 10 k thermistor has a sensitivity of 43 mV C whereas an RTD sensor has a sensitivity of 4 mV C Proportional control term may be set too high Reduce the value of the proportional term For...

Page 23: ...40 UNC Airflow Direction MECHANICAL SPECIFICATIONS All Tolerances are 5 unless noted WEIGHTS WHY5640 0 6 oz WHS302 Heatsink 0 5 oz WXC303 4 Fan 0 3 oz PIN DIAMETER 0 020 PIN LENGTH 0 157 12 PIN MATERI...

Page 24: ...FAN COM VM2 VM1 CW 2 AMPS CCW 0 AMPS LIM B OUTPUT A SENSOR RUN RSET CW Decr CCW Incr sec I TERM PGND VS VDD OFF ENABLE ON WAVELENGTH ELECTRONICS For use with WHY5640 CW Decr CCW Incr P GAIN SET CCW D...

Page 25: ...BLUE PGND 2 ORANGE VS 3 RED VDD 4 BLACK COM 5 WHITE VM1 6 GREEN VM2 CABLING SPECIFICATIONS These cables are included with the WHY5690 Evaluation Board WTC3293 00101 INPUT CABLE MOLEX 43645 0400 MICRO...

Page 26: ...eering decompiling or disassembling this product NOTICE The information contained in this document is subject to change without notice Wavelength will not be liable for errors contained herein or for...

Reviews: