background image

9

Figure 4 

:

Location Requirements for Suction
Line Filter Installation after Motor
Burnout

The scroll compressors in the RAUP
units do not unload. Instead, they are
staged on and off  for various steps of
loading. This sequence is critical
and must not be changed!
 Altering
this sequence in any way could cause
compressor failure.

Compressor
Motor Winding Ther mostat

Each motor winding thermostat is a
pilot duty control designed to stop
compressor operation if  the motor
windings become hot due to rapid
cycling ,loss of  charge, abnormally low
s u c t i o n   t e m p e r a t u r e s,   o r   t h e
compressor r unning backwards.

Compressor Manifold Piping

The compressor refrigerant piping
manifold system was purposely designed
to provide proper oil return to both
compressors; therefore, the original
refrigerant manifolding system should
not be modified in any way!

If a compressor replacement is required,
do not alter the compressor manifold
piping; improper oil retur n and
compressor failure could result.
If  a suction filter is required, install it a
minimum of  18” upstream of  the
compressor manifold piping.
See Figure 4

Caution : Altering the original
manifold piping may cause oil
compressor failure.

This sequence is of  most importance
because it maximizes lubrication and
ensure proper oil return. Secondly, the
design of  the oil return with equalizer
is critical. The lead compressor must
always be in the lead in the sequence.
Should it fail, it locks out the circuit
i m m e d i a t e l y,   s av i n g   t h e   o t h e r
compressor.

Note: 1, 2, 3 and 4 indicate which compressor in the unit is operat-
ing. (%) indicates the amount of  the circuit in the operation during a
given step. Refer to dimensional data for the location of the compressors
1, 2, 3 and 4 in the RAUP unit.

Table 2B

Compressor Sequencing

Unit
Size

250
300
400
500
600

Control

Step

1
2
1
2
3
4

Circuit

Comp.1

1

(50%)

1,2

(100%)

1

(50%)

1,2

(100%)

     Circuit
    Comp.2
   

-

  

-
-

   

-

3,4

(100%)

Oil Equalizer Line

Compressor 2

Suction Line
(Compressor 1)

Compressor 1

Minimum 18 straight,
unobstructed piping
to suction line filter

Common
Suction Gas
from Evaporator

Oil Seperator Tee

Suction Line
(Compressor 2)

Note: Anytime one compressor is
replaced, the oil charge for the
remaining compressor must be
replaced.

Compressor

1,2

1,2

(100%)

(100%)

 -

3            (50%)

Summary of Contents for RAUP 250

Page 1: ...Installation Operation Maintenance Split System Condensing Units 20 55 Tons Models RAUP 400 RAUP 500 RAUP 600 RAUP 250 RAUP 300 RAUP IOM002 0806 August 2006 ...

Page 2: ... the goods within 72 hours of delivery Notify the local Trane Sales Office at the same time The unit should be totally inspected within 15 days of delivery If any concealed damage is discovered stop unpacking the shipment Take photos of the damaged material if possible Notify the Carrier immediately by phone and registered mail Notify the local Trane Sales office Concealed damage must be reported ...

Page 3: ...ion 3 Electrical Connections 5 Unit Start up 5 Operation Maintenance Unit Operation 7 Seasonal start up procedure 7 Maintenance Maintenance 7 Weekly Maintenance 7 Maintenance Inspections 8 Compressor Motor Winding Thermostat 9 Compressor Manifold Piping 9 10 to 12 Dimensional Data Dimensional Data Condensing Unit Trouble Analysis Installation Checklist Commissioning Log Sheet Wiring Diagram Schema...

Page 4: ... Installed Shipped Options 0 None 1 Corrosion Resistant Coated Fin 2 Suction Liquid Line Service Valves 3 Crankcase Heater 4 1 and 2 Corrosion Resistant Coated Fin Service Valves 5 1 2 and 3 Corrosion Resistant Coated Fin Service Valves Crankcase Heater 6 1 and 3 Corrosion Resistant Coated Fin Crankcase Heater 7 2 and 3 Service Valves Crankcase Heater A Service Indicator MODEL NOMENCLATURE EG 1 2 ...

Page 5: ... Propeller Propeller Propeller No used 2 3 3 4 6 Diameter in mm 28 710 28 710 28 710 28 710 28 710 No of Blade 4 4 4 4 4 Pitch Angle degree 29 29 29 29 29 Drive Type Direct Direct Direct Direct Direct Nominal Airflow3 cfm cmh 11 500 19 539 15 000 25 485 17 100 29 053 22 280 37 853 29 400 49 950 MOTOR No of Motor 2 3 3 4 6 Motor hp each hp kW 0 4 0 3 0 4 0 3 0 4 0 3 0 4 0 3 0 4 0 3 No of Speed 1 1 ...

Page 6: ... sufficient strength to support the unit s weight Lifting of the unit Four lifting lugs are provided at the base of each unit for crane lift Attach cable slings to each lug refer to Figure1 and install a spreader bar between the cable to protect the unit Make sure that the lifting equipment is capable of handling the weight of the unit Table 1 Clearances Provide sufficient clearance around the uni...

Page 7: ...r leak testing a violent explosion may result 3 Always use a pressure regulator valves and gauges to control drum and line pressures when pressure testing the system Excessive pressures may cause line ruptures equipment damage or an explosion resulting in personal injury Pressure test the liquid line and suction line at pressures dictated by local codes Charge enough refrigerant into the system to...

Page 8: ...unit within sight for safety 2 Use copper conductors only for installation wiring Unit terminals are not designed to accept other type of wiring The use of aluminium wire may cause galvanic corrosion and or overheating at the connection points with resultant equipment failure Unit Start Up Preparation for start up Before starting the unit use the following procedures to ensure that the unit is com...

Page 9: ...compressors Oil level Oil should be visible in the compressor under full load in the compressor oil level sight glass The unit was charged with the proper amount of oil before shipping Under normal operation compressor oil is always expected to return to compressor oil sump and no additional oil should be added For oil level indication refer to compressor oil sight glass as per Figure 3 If oil is ...

Page 10: ...LS Figure 3B EXPANSION VALVE CAPILLARY TUBES SIGHT GLASS STRAINER LIQUID LINE FROM RECEIVER EXPANSION VALVE SOLENOID LIQUID VALVE EXPANSION VALVE EXPANSION VALVE THERMAL BULBS EXPANSION VALVE EQUALIZER LINES SUCTION LINE TO COMPRESSOR Figure 3A Maintenance The following maintenance are given as an essential part of the required maintenance of this equipment However the services of a qualified serv...

Page 11: ...es The following procedures should be carried out by a qualified service technician as part of a maintenance contract The first and last visit will include the seasonal shut down and start up procedures when applicable as detailed on the section on operation The visits should include the following procedures Inspect contacts of motor contactors Check setting and function of each system control Per...

Page 12: ...red install it a minimum of 18 upstream of the compressor manifold piping See Figure 4 Caution Altering the original manifold piping may cause oil compressor failure This sequence is of most importance because it maximizes lubrication and ensure proper oil return Secondly the design of the oil return with equalizer is critical The lead compressor must always be in the lead in the sequence Should i...

Page 13: ...ide or fuse Voltmeter does not read proper voltage Motor starter holding coil is not energized Compressor will not operate Open contact on high pressure switch Discharge pressure above cut in setting Probable cause Burned out motor Burned out holding coil or broken contacts Safety control of thermal overload relays has cut outs a Power failure b Disconnect switch open Fuse down Replace fuse Low vo...

Page 14: ...nt oil charge Clogged filter drier Liquid flooding back to compressor Recommended action All oil Replace Readjust superheat setting and verify correct bulb mounting F Compressor is noisy Problems and symptoms Abnormally cold suction line compressor knocks Valve bulb attachment Compressor noisy Probable cause a Liquid flood back b Expansion Valve stuck in open position Incorrect direction of rotati...

Page 15: ...far a Adjust superheat and check flood back to compressor bulb attachment b Expansion valve stuck in open b Repair or replace position L Discharge pressure too high Problems and symptoms Probable cause Recommended action Bubbles in sight glass Lack of refrigerant Repair leak add refrigerant High pressure drop across Clogged filter drier Replace filter drier No refrigerant flow through Expansion va...

Page 16: ...13 ...

Page 17: ...14 ...

Page 18: ...15 ...

Page 19: ...16 ...

Page 20: ...17 ...

Page 21: ... SWITCH FUSED L2 L1 N L3 INPUT MCB T1 J2 SUPPLY POWER 0 240 33 30 T3 32 30 31 MODULE STARTER CONTROLLER STEP 1 COMPR 1 STEP 2 COMPR 2 C1 C2 CF1 CF2 J1 EVF C AUX A C2 A C1 0L2 C5 TB START STOP MCB FUSED DISCONNECT SWITCH EVF C EVF OL EVF C EVF OL EVF SEE UNIT NAMEPLATE FOR LINE VOLTAGE 5T3 5T2 5T1 E 240 V CONTROL WIRING SCHEMATIC TERMINATION DIAGRAM RAUP250 DISCONNECT ALL ELECTRIC POWER INCLUDING R...

Page 22: ...ABB 1P 6A DESCRIPTION DESCRIPTION COMP 1 POWER LINE COMP 2 POWER LINE 1 4 3 1 1 QTY QTY CONTROL LINE CONTROL LINE COMP 1 ADD FOR CCH OPTION ADD FOR CCH OPTION 9 9 8 8 4 4 390mm 390mm 14 12 A C1 A C1 12 14 A C2 A C2 C5 C5 MCB 11 11 CONTROLLER CONTROLLER MODULE MODULE STARTER STARTER 255mm 6 6 7 7 1 1 J2 J2 TB T2 T1 T7 T6 T3 T4 T5 J1 J1 800mm L1 L1 L2 L2 L3 L3 N E E 200mm 3 3 13 1TB5 1TB5 5T1 E E 5T...

Page 23: ...D SW3 BUTTON FOR 4 SECONDS TO 4 EVF INTERLOCK T1 T2 TB T3 MCB TERMINATION CONTROL 32 33 30 N TO TEMP CONTROLLER STEP 2 TO TEMP CONTROLLER STEP 1 RAUP MODEL ONLY NO AC SIGNALAT INPUTS CONTACT INPUTS ONLY WARNING COM 0 JUMPER JUMPER HMWT 4 COM 0 HMWT 3 OL 4 OL 3 HPCO 2 COM 0 JUMPER JUMPER JUMPER S4 LPCO 2 COM 0 COM 0 S3 S2 COMP START UP TIMING A CIRCUIT A C1 ON DELAY TIME 1 min A CIRCUIT A C2 ON DEL...

Page 24: ... J2 31 OUTPUT J3 INPUT J1 L2 L1 PT SWITCH DISCONNECT FUSED L2 L1 STEP 2 COMPR 2 STEP 1 C1 COMPR 1 C2 0L1 CF1 CF2 0L2 A C1 A C2 N L3 EVF C AUX CF3 C5 TB MCB FUSED DISCONNECT SWITCH N L3 STOP START EVF OL EVF C EVF C EVF OL EVF 240 V CONTROL WIRING SCHEMATIC TERMINATION DIAGRAM RAUP300 DISCONNECT ALL ELECTRIC POWER INCLUDING REMOTE DISCONNECTS BEFORE SERVICING FAILURE TO DISCONNECT POWER BEFORE SERV...

Page 25: ...TOTAL 8 8 9 9 7 7 5 5 6 6 4 4 2 2 1 2 1 1666 7 700 1 4 1 1 TRANSFORMER 240V 21V 8V 30VA STARTER CONTROLLER VERSION 1 1 2 2 NO NO 1 1 DESCRIPTION DESCRIPTION COMP 1 POWER LINE OL 1 OL 1 OL 2 OL 2 12 12 8 8 4 4 6 6 7 7 11 11 COMP 2 POWER LINE 385mm 1 1 255mm J2 J2 J4 J4 J5 J5 COMP 1 CONTROL LINE CONTROL LINE 1 QTY QTY 1 CONTROL LINE CONTROL LINE 240V 24V TX1 226mm COMP 2 L1 L1 FOR ILLUSTRATION ONLY ...

Page 26: ...CONDS TO CLEAR THE MEMORABLE ERROR 4 EVF INTERLOCK MCB T3 T1 T2 TB TERMINATION CONTROL 30 N 32 33 ALM NO ALM NC COM COM 5 COM 4 B C4 COM 2 B C3 A C2 COM 1 A C1 OUTPUT COM 3 JUMPER JUMPER JUMPER JUMPER JUMPER TO TEMP CONTROLLER STEP 2 TO TEMP CONTROLLER STEP 1 COM 0 S1 S4 7 SEGMENT DISPLAY CODE TABLE 7 Segment Display COM 0 S4 O3 O4 t4 t3 H2 HMWT 4 COM 0 HMWT 3 OL 4 S3 S2 S1 COM 0 L1 H1 O1 O2 L2 t1...

Page 27: ... T2 STARTER CONTROLLER J5 30 0 POWER SUPPLY J4 MODULE OUTPUT 30 J2 T1 32 STEP 3 MCB 31 STEP 2 INPUT STEP 4 CF1 COMPR 1 C1 A C1 OL1 FUSED DISCONNECT SWITCH PT L3 L1 L2 N OL4 C2 C3 OL2 A C2 OL3 B C3 C4 COMPR 4 B C4 EVF C AUX MCB STOP START EVF OL EVF C FUSED DISCONNECT SWITCH L3 SEE UNIT NAMEPLATE FOR LINE VOLTAGE L2 L1 N EVF C EVF OL EVF J3 FOR RAUP500 ONLY J1 CF3 CF4 C5 TB 5T3 5T2 5T1 E 240 V CONT...

Page 28: ...V 8 V 30 VA 6mm COMP 1 COMP 2 6mm 6mm 2 2 SIZE CABLE 2 POWER 3 _ _ _ 6 5 4 LENGTH TOTAL 1 2 NO COMPRESSOR 4 POWER LINE COMPRESSOR 3 POWER LINE 374mm 6 3 4 1 1 QTY 1 1 COMPRESSOR 2 POWER LINE ADD FOR CCH OPTION CIRCUIT A CONTROL LINE FOR ILLUSTRATION ONLY 1TB5 500 mm T3 MODULE STARTER CONTROLLER CIRCUIT B CONTROL LINE J1 10 J3 1000mm TX1 240V 21 8V 1 J2 9 T2 T1 TB 9 J5 J4 2 8 L3 PT 7 L1 L2 COLOR IS...

Page 29: ...2 30 N CIRCUIT A CIRCUIT B COM 1 A C2 A C1 B C4 B C3 C5 COM ALM NO COM 4 COM 2 COM 3 ALM NC COM 5 OUTPUT THERMOSTAT STATUS S1 S4 44 TO TEMP CONTROLLER STEP 1 TO TEMP CONTROLLER STEP 2 TO TEMP CONTROLLER STEP 4 TO TEMP CONTROLLER STEP 3 46 45 45 41 40 40 39 LPCO 2 NORMAL 7 SEGMENT DISPLAY CODE TABLE Error Description OL 1 Error OL 2 Error OL 3 Error OL 4 Error HPCO 2 Error HMWT 3 Error HMWT 4 Error...

Page 30: ...C5 TB C1 C2 C3 C4 COMPRESSOR TERMINATION BLOCK CONTROL TERMINATION BLOCK STARTER CONDENSOR FAN FACTORY INSTALLED POWER TERMINALS CIRCUIT BREAKER SYSTEM SWITCH FAN CONDENSOR TRANSFORMER 240V 21V 8V EVAPORATOR FAN CF 1 2 3 4 5 6 S1 EVF C5 PT MCB TB TX1 CRANKCASE HEATER CCH 35 L2 240 V CONTROL WIRING STARTER CONTROLLER MODULE EVF INTERLOCK T2 33 SUPPLY 30 3 T3 T1 32 240V 30 33 POWER MCB 31 J2 0 240 T...

Page 31: ... 1 4 516 2646 2 4 4 1 3 1 QTY 1 1 COMPONENT LAY OUT POWER WIRING RAUP600 J5 COMPRESSOR 4 POWER LINE COMPRESSOR 3 POWER LINE E 7 CONTROL LINE 374mm CIRCUIT B CONTROLLER MODULE J1 J2 STARTER 1000mm 10 J3 J4 PT L3 N L1 L2 POWER CABLES SHOWN IN COLOR COLOR IS BLACK OR RED THE ACTUAL POWER CABLE FOR ILLUSTRATION ONLY 3 10 COMPRESSOR 2 POWER LINE 9 345mm 6 T3 T2 T1 T7 T4 T6 T5 ADD FOR CCH OPTION TX1 240...

Page 32: ...ONTR OL 30 B C M 32 33 58 TO TEM P CONTR OLLER STE P 3 TO TEM P CONTR OLLER STE P 4 TO TEM P CONTR OLLER STE P 2 TO TEM P CONTR OLLER STE P 1 42 50 55 56 57 57 54 51 53 54 52 51 47 46 43 43 46 44 45 39 41 40 40 HMWT 4 THERMOS TAT S TATUS S1 S4 S3 COM 0 S4 COM 0 S2 S1 HMWT 4 Error OL 3 Error HPCO 2 Error LPCO 2 Error HMWT 3 Error OL 4 Error t4 t3 O4 O3 H2 L2 LPCO 1 Error HPCO 1 Error HMWT 1 Error H...

Page 33: ...e Check oil traps presence on discharge line if there vertical risers 3m Check pitch for horizontal lines 1cm m Check refrigerant presence Electrical equipment Check direction of rotation of compressors and fan motors Check installation and rating of mains power switch fuse Check that electrical connections comply with specification Check that electrical connections match information on manufactur...

Page 34: ... 1 Comp No 2 Comp No 3 Comp No 4 T1 T1 T1 T1 T2 T2 T2 T2 T3 T3 T3 T3 Voltage Imbalance Comp 1 Comp 3 Comp 2 Comp 4 B Amp Draw Comp No 1 Comp No 2 Comp No 3 Comp No 4 T1 T1 T1 T1 T2 T2 T2 T2 T3 T3 T3 T3 3 Operating Conditions A Circuit A Discharge Pressure Liquid Line Pressure Liquid Line Temp Subcooling Amblent Temp Suction Pressure Suction Line Temp SuperHeat Evap Entering Air Temp DB WB Evap Dis...

Page 35: ...06 RAUP IOM002 0705 Trane has a policy of continuous product and product data implement and reserves the right to change design and specifications without notice http www tranethailand com A Business of American Standard Company ...

Reviews: