background image

TA1218N/F 

2000-09-11  1/40 

 

TOSHIBA Bipolar Linear Integrated Circuit    Silicon Monolithic 

TA1218N, TA1218F 

Audio/Video Switching IC for TVs 

 
 
 

The TA1218N/F is an audio/video switching IC for TV sets. 
Conforming to I

2

C bus standards, it allows you to perform 

various switching operations through the bus lines by using a 
microcomputer. Thanks to its 2-channel outputs, the TA1218N/F 
can also be used for the PIP systems. Furthermore, since the 
presence of a signal on its sync signal output pin can be 
determined by a microcomputer, it is possible to check each 
input/output channel (self-diagnosis). 

This IC has the same pin assignments as the TA1219AN 

(SDIP36), a 1-channel output version of the TA1218N/F, so   

these chips are pin compatible on pins 3 to 20 and 23 to 40.

 

 

Features 

• 

I

2

C bus control

 

• 

Video :  5-channel inputs and 2-channel outputs   

(2 channels conforming to S system)

 

• 

Audio :  5-channel inputs and 3-channel outputs

 

• 

Self-diagnostic function

 

• 

ADC inputs based on European 21-pin standards 

• 

Switchable subaddress 

 

TA1218N 

 

TA1218F 

 

Weight 
SDIP42-P-600-1.78  : 4.13 g (typ.) 
QFP48-P-1014-0.80 : 0.83 g (typ.) 

• 

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general
can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the
buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and
to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or
damage to property. 
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the
most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling
Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc.. 

• 

The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal
equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are
neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or
failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy
control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control
instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document
shall be made at the customer’s own risk. 

• 

The products described in this document are subject to the foreign exchange and foreign trade laws. 

• 

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by
TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its
use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or
others. 

• 

The information contained herein is subject to change without notice. 

000707EBA1

 

Summary of Contents for TA1218F

Page 1: ...cause loss of human life bodily injury or damage to property In developing your designs please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications Also please keep in mind the precautions and conditions set forth in the Handling Guide for Semiconductor Devices or TOSHIBA Semiconductor Reliability Handbook etc The T...

Page 2: ... Vout1 Vout2 Yout Yin Cout Cin SCL SDA Address I O1 3 level I O2 3 level I O3 O4 O5 LoutTV Lout1 Lout2 RoutTV Rout1 Rout2 4 3 33 23 6dB 10 28 7 12 16 S S 18 24 25 27 19 20 21 22 41 14 11 15 8 29 5 26 Pulse conver ter 13 17 9 31 6 1 37 40 39 35 2 38 42 36 30 34 32 Sync separator 46 45 26 2 8 12 10 15 24 7 11 3 31 47 9 13 5 29 48 33 21 38 42 36 32 34 30 22 23 25 16 17 18 19 41 40 37 43 39 35 44 24 I...

Page 3: ...inV1 LinS1 Y VinS1 RinS1 CinS1 LinS2 Y VinS2 RinS2 CinS2 I O1 I O2 I O3 Vout2 O5 LoutTV RoutTV Vout1 Lout1 Yout Rout1 Cout VCC Cin RinV2 Yin LinV2 VinV2 Address Sync out SDA SCL GND O4 4 1 2 3 5 9 6 7 8 10 14 11 12 13 15 20 17 18 19 21 16 39 42 41 40 38 34 37 36 35 33 29 32 31 30 28 23 26 25 24 22 27 11 TA1218N ...

Page 4: ... Yout Rout1 Cout VCC NC NC Cin RinV2 Yin LinV2 VinV2 Address 4 1 2 3 5 9 6 7 8 10 14 11 12 13 15 20 17 18 19 21 16 23 24 22 38 34 37 36 35 33 29 32 31 30 28 26 25 27 C in S2 I O1 I O2 I O3 O4 NC GND SCL SDA Sync out 39 42 41 40 43 46 45 44 48 47 R TV L TV Det Select Det in R out 2 L out 2 V out 2 O5 L out TV R out TV TA1218F ...

Page 5: ...s 45 Ω Furthermore the signal output from this pin is pulse converted for use in self diagnosis The converted signal is output from Sync Out This output can be muted in combination with Lout2 by bus control 3 45 Det in This pin is for input a sync separation signal Input the signal from Det Select to this pin with capacitance coupling The input resistance of this pin is 18 kΩ The sync signal separ...

Page 6: ...ite audio signal from the main demodulator in the TV set The signal fed into this pin is presented to Vout1 Vout2 Yout and Cout The same signal is also output from Det Select as a sync separation signal The input dynamic range of this pin is 2 0 Vp p and the input resistance is 30 kΩ 8 3 LinV1 This pin is for input a left audio signal from an external source V1 channel This pin can also be used fo...

Page 7: ...s pin is 2 0 Vp p and the input resistance is 30 kΩ 11 7 LinS1 This pin is for input a left audio signal from an external source S1 channel The signal fed into this pin is presented to Lout1 and Lout2 The input dynamic range of this pin is 6 5 Vp p and the input resistance is 70 kΩ 12 8 Y VinS1 This pin is for input a luminance signal or composite video signal from an external source S1 channel Th...

Page 8: ...e YinS1 signal The input dynamic range of this pin is 2 0 Vp p and the input resistance is 30 kΩ 15 11 LinS2 This pin is for input a left audio signal from an external source S2 channel The signal fed into this pin is presented to Lout1 and Lout2 The input dynamic range of this pin is 6 5 Vp p and the input resistance is 70 kΩ 16 12 Y VinS2 This pin is for input a luminance signal or composite aou...

Page 9: ...Vout2 after being combined with the YinS2 signal The input dynamic range of this pin is 2 0 Vp p and the input resistance is 30 kΩ 19 16 I O1 This is an ADC input DAC output pin The ADC is a 3 level detection type 2 bits The threshold levels are 7 0 V and 2 25 V The DAC 1 bit is an open collector output Make sure that the current flowing into this pin is 2 0 mA or less 20 17 I O2 This is an ADC in...

Page 10: ... output This is an open collector output Make sure that the current flowing into this pin is 2 0 mA or less 23 21 GND This is the GND pin 24 22 SCL This pin is for input an I 2 C bus clock The input threshold level of this pin is 2 25 V 25 23 SDA This is an I 2 C bus data input output pin The input threshold level of this pin is 2 25 V Make sure that the current flowing into this pin is 3 0 mA or ...

Page 11: ...ad 28 26 VinV2 This pin is for input a composite video signal from an external source V2 channel This pin can also be used for PIP signal input The signal fed into this pin is presented to Vout1 Vout2 Yout and Cout The same signal is also output from Det Select as a sync separation signal The input dynamic range of this pin is 2 0 Vp p and the input resistance is 30 kΩ 29 27 LinV2 This pin is for ...

Page 12: ... filter The signal fed into this pin is presented to Cout The input dynamic range of this pin is 5 5 Vp p and the input resistance is 60 kΩ This pin also functions as a audio mute switch The entire audio output can be muted by pulling the voltage on this pin below 2 25 V 33 33 VCC This is the power supply pin Apply 9 V to this pin The current consumption of this pin is 47 mA 34 34 Cout This pin is...

Page 13: ...as a sync separation signal 37 37 Lout1 This pin is for output the main channel left audio signal The signal fed into LinV1 LinV2 LinS1 LinS2 or LinTV is outputted from this pin The output resistance of this pin is 45 Ω Furthermore the signal outputted from this pin is pulse converted for use in self diagnosis The converted signal is outputted from Sync Out This output can be muted independently o...

Page 14: ...tion with RoutTV by bus control 41 41 O5 This is a 1 bit DAC output pin This is an open collector output Make sure that the current flowing into this pin is 2 0 mA or less 42 42 Vout2 This pin is for output a sub channel composite video signal The signal fed into VinTV VinV1 VinV2 VinS1 VinS2 YinS1 CinS1 or YinS2 CinS2 is outputted from this pin The output resistance of this pin is 25 Ω The same s...

Page 15: ...o mute YC output switching Data 1 F0H LoutTV RoutTV Lout2 Rout2 Rout1 Lout1 Forced TV Audio Yout Cout B17 B16 B15 B14 B13 B12 B11 B10 Data 2 1FH Sync detection sensitivity switching Sync output switching Sync diagnosis detection switching Input select main B27 B26 B25 B24 B23 B22 B21 B20 DAC output switching Write Data 3 07H O5 O4 I O3 I O2 I O1 Input select sub B37 B36 B35 B34 B33 B32 B31 B30 ADC...

Page 16: ... FV Note5 Y VinS2 Open 0 1 1 V1 V VinV1 1 0 1 V2 V VinV2 1 1 0 TV V VinTV 1 1 1 Do not use 100 for the input select data Note5 FV Forced Video Mode Main L R Select Terminal 37 and 35 37 and 35 Output Signal Bus Data Mode Main L R Output Signal Forced TV Voice Input Select main Input Lout1 Rout1 B03 B12 B11 B10 S1 LinS1 RinS1 0 0 S2 LinS2 RinS2 0 1 V1 LinV1 RinV1 1 0 1 V2 LinV2 RinV2 1 1 0 TV LinTV...

Page 17: ...VinS2 CinS2 0 S2 FV Y VinS2 Open 0 1 1 V1 V Vin1 1 1 1 V2 V Vin2 1 1 0 TV V VinTV 1 1 1 Do not use 100 for the input select data Sub L R Select Terminal 37 and 35 37 and 35 Output Signal Bus Data Mode SUB L R Output Signal Forced TV Voice Input Select sub Input Lout2 Rout2 B03 B22 B21 B20 S1 LinS1 RinS1 0 0 S2 LinS2 RinS2 0 1 V1 LinV1 RinV1 1 0 1 V2 LinV2 RinV2 1 1 0 TV LinTV RinTV 0 1 1 1 TV LinT...

Page 18: ...nS2 S2 S Yin Yin 0 V1 V through VinV1 V1 V 1 Yin Yin 0 V2 V through VinV2 V2 V 1 Yin Yin 0 TV V through VinTV TV V 1 C Output Select Terminal 34 34 Output Signal Bus Data Mode Y Output Signal C Output Switching Input Through Cout Main V Select Mode see table 2 2 B00 Cin Cin 0 V through Y VinS1 V or FV 1 S1 C through CinS1 S1 S Cin Cin 0 V through Y VinS2 V or FV 1 S2 C through CinS2 S2 S Cin Cin 0...

Page 19: ... VinV2 1 0 Video Input S1 Y VinS1 Sync 0 0 0 0 Vout1 Vout1 1 1 Vout2 Vout2 0 1 Yout Yout 1 0 Video Output Cout Cout Sync 0 1 0 0 Rout1 Rout1 1 1 Lout1 Lout1 0 1 Rout2 Rout2 1 0 Audio Output Lout2 Lout2 1 0 0 For Det Select marked by the video input or video output corresponding to data B15 B14 and B13 is selected Sync Detection Sensitivity Switching Bus Data Detection Sensitivity Switching Mode B1...

Page 20: ...e B07 B06 B05 B04 off 0 Lout1 on 1 off 0 Rout1 on 1 off 0 Lout2 Rout2 on 1 off 0 LoutTV RoutTV on 1 DAC Output Switching Bus Data Mode DAC Output Switching Output State B27 B26 B25 B24 B23 Open 0 I O1 Low 1 Open 0 I O2 Low 1 Open 0 I O3 Low 1 Open 0 O4 Low 1 Open 0 O5 Low 1 ...

Page 21: ...eset off 0 S Input Discrimination Bus Data Mode S Input Discrimination Input Voltage B32 B31 High open 1 CinS2 Low 0 High open 1 CinS1 Low 0 ADC Input Discrimination Bus Data Mode ADC Input Discrimination Input Voltage B37 B36 B35 B34 B33 High 0 Mid 0 I O1 Low 1 1 High 0 Mid 0 I O2 Low 1 1 High 0 I O3 Low 1 ...

Page 22: ...ment Purchase of TOSHIBA I2C components conveys a license under the Philips I2C Patent Rights to use these components in an I2C system provided that the system conforms to the I2C Standard Specification as defined by Philips SDA SCL S Start condition P Stop condition SDA from Master SDA from Slave SCL from Master High impedance S 8 1 9 High impedance SDA SCL SDA can be changed SDA must not be chan...

Page 23: ... 14 4 mW at TA1218N or 11 1 mW TA1218F per degree of centigrade see the diagram below Note7 This device is not proof enough against a strong E M field by CRT which may cause function errors and or poor characteristics Keeping the distance from CRT to the device longer than 20 cm or if cannot placing shield metal over the device is recommended in an application Ambient temperature Ta C Power consum...

Page 24: ... Y input amplitude 12 16 8 8 1 0 Vp p 100IRE Comb Y input amplitude 30 32 2 0 Vp p Chroma input amplitude 14 18 10 15 286 mVp p Burst Comb chroma input amplitude 32 30 572 mVp p Burst Audio input amplitude 5 6 8 9 11 13 15 17 29 31 3 5 7 9 11 13 29 31 47 48 6 0 Vp p Electrical Characteristics referenced to VCC 9 V at Ta 25 C unless otherwise specified Current Consumption Pin No N F Pin Name Symbol...

Page 25: ... V12 5 0 5 2 5 4 V 13 9 RinS1 V13 5 0 5 2 5 4 V 14 10 CinS1 V14 5 0 5 2 5 4 V 15 11 LinS2 V15 5 0 5 2 5 4 V 16 12 Y VinS2 V16 5 0 5 2 5 4 V 17 13 RinS2 V17 5 0 5 2 5 4 V 18 15 CinS2 V18 5 0 5 2 5 4 V 23 21 GND V23 0 V 28 26 VinV2 V28 5 0 5 2 5 4 V 29 27 LinV2 V29 5 0 5 2 5 4 V 30 28 Yin V30 5 0 5 2 5 4 V 31 29 RinV2 V31 5 0 5 2 5 4 V 32 30 Cin V32 5 0 5 2 5 4 V 33 33 VCC V33 9 0 V 34 34 Cout V34 3...

Page 26: ...is raised by 0 5V Then calculate the input resistance value R R 0 5 V I Ω Det Select R4 17 35 53 Ω Vout1 R38 13 25 50 Ω Vout2 R42 13 25 50 Ω Yout R36 13 25 50 Ω Cout R34 13 25 50 Ω LoutTV R40 20 45 90 Ω RoutTV R39 20 45 90 Ω Lout1 R37 20 45 90 Ω Rout1 R35 20 45 90 Ω Lout2 R1 20 45 90 Ω Output pin Output resistance Rout2 R2 20 45 90 Ω Measure a voltage change V on each pin when a current of 100 µA ...

Page 27: ...of I O1 input pin 19 16 I O1 VthI1M 6 5 7 0 7 5 V Hig Mid threshold level of I O1 input pin 19 16 I O2 VthI2L 1 75 2 25 2 75 V Mid Low threshold level of I O2 input pin 20 17 I O2 VthI2M 6 5 7 0 7 5 V Hig Mid threshold level of I O2 input pin 20 17 ADC input discrimination voltage I O3 VthI3 1 75 2 25 2 75 V Hig Low threshold level of I O1 input pin 21 ...

Page 28: ...0V1 10 MHz VinV2 F28V1 10 MHz Y VinS1 F12V1 10 MHz CinS1 F14V1 10 MHz Y VinS2 F16V1 10 MHz Vout1 Frequency response CinS2 F18V1 10 MHz 1 Apply a 1 0 Vp p sine wave to each input pin 2 In each select mode measure a frequency at which the output amplitude on pin 38 38 is 3dB down from the 15 kHz applied level VinTV CT7V1 55 60 dB VinV1 CT10V1 55 60 dB VinV2 CT28V1 55 60 dB Y VinS1 CT12V1 55 60 dB Ci...

Page 29: ... 55 60 dB VinV1 CT10V2 55 60 dB VinV2 CT28V2 55 60 dB Y VinS1 CT12V2 55 60 dB CinS1 CT14V2 55 60 dB Y VinS2 CT16V2 55 60 dB Vout2 Crosstalk CinS2 CT18V2 55 60 dB 1 Apply a 3 58 MHz 1 0 Vp p sine wave to each input pin 2 In each select mode compare signal output from the selected pin with leakage components from nonselected pins to find a crosstalk VinTV VDR7Y 1 5 2 0 Vp p VinV1 VDR10Y 1 5 2 0 Vp p...

Page 30: ...ompare signal output from the selected pin with leakage components from nonselected pins to find a crosstalk VinTV VDR7C 1 5 2 0 Vp p VinV1 VDR10C 1 5 2 0 Vp p VinV2 VDR28C 1 5 2 0 Vp p Y VinS1 VDR12C 1 5 2 0 Vp p CinS1 VDR14C 1 5 2 0 Vp p Y VinS2 VDR16C 1 5 2 0 Vp p CinS2 VDR18C 1 5 2 0 Vp p Cout Input dynamic range Cin VDR32C 5 0 5 5 Vp p 1 Apply a 15 kHz sine wave to each input pin 2 In each se...

Page 31: ...p sine wave to each input pin 2 In each select mode compare signal output from the selected pin with leakage components from nonselected pins to find a crosstalk VinTV VDR7D 5 0 5 5 V VinV1 VDR10D 5 0 5 5 V VinV2 VDR28D 5 0 5 5 V Y VinS1 VDR12D 5 0 5 5 V Vout1 VDR38D 1 5 2 0 V Vout2 VDR42D 1 5 2 0 V Yout VDR36D 1 2 1 8 V Det select Input dynamic range Cout VDR34D 1 2 1 8 V 1 Apply a 15 kHz sine wa...

Page 32: ...0 1 2 0 MHz LinV2 F29L1 0 1 2 0 MHz LinS1 F11L1 0 1 2 0 MHz Lout1 Frequency response LinS2 F15L1 0 1 2 0 MHz 1 Apply a 1 0 Vp p sine wave to each input pin 2 In each select mode measure a frequency at which the output amplitude on pin 37 is 3dB down from the 1 kHz applied level LinTV CT5L1 70 100 dB LinV1 CT8L1 70 100 dB LinV2 CT29L1 70 100 dB LinS1 CT11L1 70 100 dB Lout1 Crosstalk LinS2 CT15L1 70...

Page 33: ... 1 2 0 MHz RinV2 F31R1 0 1 2 0 MHz RinS1 F13R1 0 1 2 0 MHz Rout1 Frequency response RinS2 F17R1 0 1 2 0 MHz 1 Apply a 1 0 Vp p sine wave to each input pin 2 In each select mode measure a frequency at which the output amplitude on pin 35 35 is 3dB down from the 1 kHz applied level RinTV CT6R1 70 100 dB RinV1 CT9R1 70 100 dB RinV2 CT31R1 70 100 dB RinS1 CT13R1 70 100 dB Rout1 Crosstalk RinS2 CT17R1 ...

Page 34: ... 1 2 0 MHz LinV2 F29L2 0 1 2 0 MHz LinS1 F11L2 0 1 2 0 MHz Lout2 Frequency response LinS2 F15L2 0 1 2 0 MHz 1 Apply a 1 0 Vp p sine wave to each input pin 2 In each select mode measure a frequency at which the output amplitude on pin 1 is 3dB down from the 1 kHz applied level LinTV CT5L2 70 100 dB LinV1 CT8L2 70 100 dB LinV2 CT29L2 70 100 dB LinS1 CT11L2 70 100 dB Lout2 Crosstalk LinS2 CT15L2 70 1...

Page 35: ... 0 1 2 0 MHz 1 Apply a 1 0 Vp p sine wave to each input pin 2 In each select mode measure a frequency at which the output amplitude on pin 2 44 is 3dB down from the 1 kHz applied level RinTV CT6R2 70 100 dB RinV1 CT9R2 70 100 dB RinV2 CT31R2 70 100 dB RinS1 CT13R2 70 100 dB Rout2 Crosstalk RinS2 CT17R2 70 100 dB 1 Apply a 1 kHz 1 0 Vp p sine wave to each input pin 2 In each select mode compare sig...

Page 36: ...the output amplitude when LinTV is selected with leakage components from nonselected pins to find a crosstalk LoutTV Mute attenuation LinTV M5LTV 70 100 dB While applying a 1 kHz 1 0 Vp p sine wave to pin 5 compare the output amplitudes on pin 40 40 when mute is turned on and turned off to find mute attenuation RoutTV Input dynamic range RinTV VDR6RTV 6 0 6 5 Vp p While applying a 1 kHz sine wave ...

Page 37: ...RoutTV Crosstalk RinS2 CT17RTV 70 100 dB 1 Apply a 1 kHz 1 0 Vp p sine wave to each input pin 2 Compare the output amplitude when RinTV is selected with leakage components from nonselected pins RoutTV Mute attenuation RinTV M6RTV 70 100 dB While applying a 1 kHz 1 0 Vp p sine wave to pin 6 48 compare the output amplitudes on pin 39 39 when mute is turned on and turned off to find mute attenuation ...

Page 38: ...29 28 27 26 25 24 23 22 21 19 2 2 µF 47 µF 2 2 µF 2 2 µF 47 µF 2 2 µF 47 µF 2 2 µF 2 2 µF 47 µF 0 01 µF 2 2 µF 2 2 µF 47 µF 47 µF 2 2 µF To micro computer 0 01 µF 4 7 kΩ 4 7 kΩ TA1218N F Lout2 Rout2 Det in Det Select LinTV RinTV VinTV LinV1 RinV1 VinV1 LinS1 Y VinS1 RinS1 CinS1 LinS2 Y VinS2 RinS2 CinS2 I O1 I O2 I O3 Vout2 O5 LoutTV RoutTV Vout1 Lout1 Yout Rout1 Cout VCC Cin RinV2 Yin LinV2 VinV2...

Page 39: ...TA1218N F 2000 09 11 39 40 Package Dimensions Weight 4 13 g typ ...

Page 40: ...TA1218N F 2000 09 11 40 40 Package Dimensions Weight 0 83 g typ ...

Reviews: