background image

 

3

 

Measuring

 

3.1

 

Measured quantities 

Prefix 

Quantity 

Calculation 

System / Phase 

Input current 

(I1+I2+I3)/3 

System 

I1 

Phase current L1 

 

L1 

I2 

Phase current L2 

 

L2 

I3 

Phase current L3 

 

L3 

Input voltage 

(U1+U2+U3)/3 

System 

U1 

L1 Phase voltage 

 

L1 

U2 

L2 Phase voltage 

 

L2 

U3 

L3 Phase voltage 

 

L3 

Active power 

P1+P2+P3 

System 

P1 

Active power L1 

 

L1 

P2 

Active power L2 

 

L2 

P3 

Active power L3 

 

L3 

Reactive power 

Q1+Q2+Q3 

System 

Q1 

Reactive power L1 

 

L1 

Q2 

Reactive power L2 

 

L2 

Q3 

Reactive power L3 

 

L3 

Apparent power 

S1+S2+S3 

System 

S1 

Apparent power L1 

 

L1 

S2 

Apparent power L2 

 

L2 

S3 

Apparent power L3 

 

L3 

U12 

Main voltageL1-L2 

 

L1 - L2 

U23 

Main voltage L2-L3 

 

L2 - L3 

U31 

Main voltage L3-L1 

 

L3 - L1 

PF 

Active power factor 

P/S 

System 

PF1 

Active power factor

 

COS(φ1)=P1/S1 

L1 

PF2 

Active power factor

 

COS(φ2)=P2/S2 

L2 

PF3 

Active power factor

 

COS(φ3)=P3/S3 

L3 

QF 

Reactive power factor 

Q/S 

System 

QF1 

Reactive power factor 

SIN(φ1)=Q1/S1 

L1 

QF2 

Reactive power factor 

SIN(φ2)=Q2/S2 

L2 

QF3 

Reactive power factor 

SIN(φ3)=Q3/S3 

L3 

LF 

LF factor 

sign(Q)*(1-|PF|) 

System 

LF1 

LF factor

 

sign(Q1)*(1-|PF1|) 

L1 

LF2 

LF factor

 

sign(Q2)*(1-|PF2|) 

L2 

LF3 

LF factor

 

sign(Q3)*(1-|PF3|) 

L3 

PA 

Phase angel 

PA=(PA1+PA2+PA3)/3 

System 

PA1 

Phase angel

 

φ1=ARCCOS(P1/S1)/PI*180*sign(P1)  L1 

PA2 

Phase angel

 

φ2=ARCCOS(P2/S2)/PI*180*sign(P2)  L2 

PA3 

Phase angel

 

φ3=ARCCOS(P3/S3)/PI*180*sign(P3)  L3 

IS 

Input current  with sign 

(IS1+IS2+IS3)/3 

System 

IS1 

Phase current  with sign 

I1*sign(P1) 

L1 

IS2 

Phase current  with sign

 

I2*sign(P2) 

L2 

IS3 

Phase current  with sign

 

I3*sign(P3) 

L3 

P_I1_U12 

Active power, System connection-02 

 

System 

P_I1_U23 

Active power, System connection -03 

 

System 

P_I1_U31 

Active power, System connection -04 

 

System 

Q_I1_U12 

Reactive power, System connection -02 

 

System 

Q_I1_U23 

Active power, System connection -03 

 

System 

Q_I1_U31 

Active power, System connection -04 

 

System 

Frequency 

 

System 

 

Summary of Contents for LQT40A

Page 1: ...Rev 2022 09 21 USER MANUAL LQT40A TILLQUIST GROUP AB Box 1120 SE 164 22 Kista Sweden Tel 46 8 594 632 00 info tillquist com www tillquist com...

Page 2: ...ered by one single unit It can measure single phase systems up to 4 wire unbalanced load systems With its 4 analog and 2 digital outputs together with a serial interface RS 485 Modbus LQT40A offers al...

Page 3: ...ction 4 2 3 Connection diagrams System connection 4 3 Measuring 7 3 1 Measured quantities 7 3 2 Meassuring system 8 3 2 1 Phase Locked loop PLL 8 3 2 2 Soft mode 8 3 2 3 Block diagram 8 3 2 4 Frequenc...

Page 4: ...e transducer must be installed near The OFF position shall be clearly marked Attention Danger to life Ensure that all leads are free of potential when connection them Voltage measurements inputs must...

Page 5: ...ed before disconnected 1 7 Maintenance The transducer requires no maintenance Any repairs shall be performed by trained personnel or the equipment shall be returned to the supplier for repair 1 8 Symb...

Page 6: ...on diagram Voltage input UL1 2 UL2 5 UL3 8 N 11 Current input In Out IL1 1 3 IL2 4 6 IL3 7 9 Aux Power Supply 13 14 Analog Output A1 20 21 A2 22 23 A3 24 25 A4 26 27 Digital Output D1 30 31 D2 32 33 M...

Page 7: ...5 4 9 in lbs 2 3 Connection diagrams System connection LQT40A system connection is programmable from single phase to 4 wire balanced or unbalanced connection Configurable System Connection System con...

Page 8: ...01 1 phase 1 element 2 wire Single phase AC 02 1 phase 1 element 3 wire 3 phase symmetric load phase shift U12 I1 03 1 phase 1 element 3 wire 3 phase symmetric load phase shift U23 I1 04 1 phase 1 ele...

Page 9: ...6 05 3 phase 1 element 3 wire 3 phase symmetrical load 09 3 phase 2 elements 3 wire 3 phase asymmetrical load 11 3 phase 3 elements 4 wire 3 phase asymmetrical load...

Page 10: ...ive power factor COS 3 P3 S3 L3 QF Reactive power factor Q S System QF1 Reactive power factor SIN 1 Q1 S1 L1 QF2 Reactive power factor SIN 2 Q2 S2 L2 QF3 Reactive power factor SIN 3 Q3 S3 L3 LF LF fac...

Page 11: ...10 Hz or higher than 120 Hz Measured quantities in soft mode are voltage U current I and frequency F 3 2 3 Block diagram Schematic block diagram of measure process Soft mode 1800 samples second 3 2 4...

Page 12: ...hannel It is possible to set a fixed value for the output Fixed output is useful when testing an installation Off position is the same as 0 mA or V 4 2 Digital outputs Digital output is used to pulse...

Page 13: ...VA Apparent power L3 S1 U1 I3 48 binary32 LF LF factor system LF sign Q 1 PF 50 binary32 LF1 LF factor L1 LF1 sign Q1 1 PF1 52 binary32 LF2 LF factor L2 LF2 sign Q2 1 PF2 54 binary32 LF3 LF factor L3...

Page 14: ...ary32 U12 V Main voltage L1 L2 20 binary32 U23 V Main voltage L2 L3 22 binary32 U31 V Main voltage L3 L1 24 binary32 P W Active power system P P1 P2 P3 26 binary32 Q var Reactive power system Q Q1 Q2...

Page 15: ...table parameters Save and load configuration file Functionality of ConfigLQT ConfigLQT allows the user to See online readings of measured values Adjust the functionality of the outputs Save parameter...

Page 16: ...ange 20mA 5 mA 10V settings within the range Resolution 16 bits External resistance load Current output max 750 15 V Voltage output min 750 Response time 100 msec Digital Outputs 2 Energy pulse output...

Page 17: ...14 70 mm 132 mm Depth Height Width...

Reviews: