Texas Instruments TPS92691 User Manual Download Page 3

www.ti.com

Introduction

1

Introduction

The TPS92691EVM-001 evaluation module (EVM) helps designers evaluate the operation and
performance of the TPS92691-Q1 and TPS92691, a multi-topology controller designed for automotive
lighting and general illumination applications. The TPS92691EVM-001 uses the TPS92691-Q1 ( AEC
Q100) IC; however, for general illumination and other non-automotive applications, the TPS92691 is
available in the same package and pin configuration and with identical performance characteristics. The
TPS92691-Q1 device implements fixed-frequency peak current mode control technique with
programmable switching frequency, slope compensation and startup timing. It incorporates a low offset
rail-to-rail current sense amplifier that can directly measure LED current over an output voltage range of 0
V to 65 V. Additional features include wide input voltage range (0 V to 65 V), PWM dimming capability,
analog dimming capability, adjustable/syncable switching frequency, input undervoltage protection, output
overvoltage protection and switch cycle-by-cycle current limit. The controller can be used to implement a
range of LED driver topologies including Boost, Buck-Boost (Boost-to-Battery), SEPIC, Cuk, and Flyback,
based on the output LED stack voltage.

2

Description

The TPS92691EVM-001 is a fully assembled and tested SEPIC LED driver designed to power a single
string of series-connected LEDs. Accurate closed-loop LED current regulation is achieved using a low-
offset current sense amplifier that is compatible with either high- or low-side current-sensing
implementations. The DC current set point can be varied over a 15:1 ratio using the high-impedance
analog adjust (IADJ) input. An integrated gate-driver circuit and proprietary PWM dimming logic is
incorporated to enable external series FET PWM dimming with greater than 100:1 dimming ratio.

LED short-circuit failure and other cable harness fault detection is facilitated by current monitor output
(IMON), which reports the instantaneous status of LED current measured by the rail-to-rail current sense
amplifier. The current monitor output is used in conjunction with microcontroller or discrete circuitry to
implement customized fault protection schemes.

2.1

Typical Applications

This converter design describes an application of the TPS92691-Q1 device as a SEPIC LED driver with
the specifications described in

Table 1

For applications with a different input voltage range or different

output voltage range, refer to the TPS92691-Q1 datasheet.

2.2

Features

Versatile LED driver capable of driving a string of 1 to 20 series-connected white LEDs

Wide input voltage range (4.5 V to 40 V): Supports automotive start-stop and load dump transients (65
V

max

)

Compatible with high- or low-side current sense resistor locations

Simple microcontroller interface to set LED current reference and PWM duty cycle

Integrated gate-drive circuit to enable series FET dimming

Instantaneous current monitor output to facilitate LED fault detection and mitigation

Supports Boost, Buck-Boost (Boost-to-Battery), SEPIC, Cuk, and Flyback LED driver topologies

3

SLVUAL8 – December 2015

TPS92691 SEPIC LED Driver Evaluation Board

Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

Summary of Contents for TPS92691

Page 1: ...7 Optimizing EVM Performance Based on LED String Voltage and Current 17 8 TPS92691EVM 001 Assembly Drawing and PCB layout 17 9 Bill of Materials 19 List of Figures 1 Connection Diagram 4 2 TPS92691EV...

Page 2: ...Nominal Operation 14 21 Over Voltage Protection 14 22 SYNC Operation 14 23 PWM Dimming Duty Cycle 50 Frequency 240 Hz 14 24 PWM Dimming Duty cycle 50 Frequency 240 Hz 14 25 PWM Dimming Duty cycle 4 F...

Page 3: ...with either high or low side current sensing implementations The DC current set point can be varied over a 15 1 ratio using the high impedance analog adjust IADJ input An integrated gate driver circui...

Page 4: ...SS pin of the TPS92691 Q1 device The voltage range is from 0 V to 5 V if driven externally The SS voltage can be monitored with this test point Pulling SHUTDOWN to GND will also serve to disable the p...

Page 5: ...lifier can be monitored with this test point The pin can be connected to an external comparator or microcontroller to detect LED short circuit LED to VIN and LED to GND fault conditions 4 Electrical P...

Page 6: ...S92691EVM 001 Schematic Configured With a High Side Current Sense and a High Side Series PFET Device 6 TPS92691 SEPIC LED Driver Evaluation Board SLVUAL8 December 2015 Submit Documentation Feedback Co...

Page 7: ...Alternate Configuration With a Low Side Current Sense and a Low Side Series NFET Device 7 SLVUAL8 December 2015 TPS92691 SEPIC LED Driver Evaluation Board Submit Documentation Feedback Copyright 2015...

Page 8: ...wing performance curves are presented for the EVM configured with a high side current sense resistor and a series PFET device Figure 2 The EVM circuit can be modified to implement low side current sen...

Page 9: ...ent mA 5 10 15 20 25 30 35 40 99 99 5 100 100 5 101 D004 LEDs 3 LEDs 7 LEDs 13 www ti com Performance Data and Typical Characteristic Curves 6 2 Line Regulation Figure 7 Output LED Current vs Input Vo...

Page 10: ...98 5 99 99 5 100 100 5 101 101 5 102 D007 VIN 10V VIN 14V VIN 18V Performance Data and Typical Characteristic Curves www ti com 6 3 Load Regulation Figure 10 Output LED Current vs LED String Configura...

Page 11: ...00mA ILED 300mA ILED 500mA www ti com Performance Data and Typical Characteristic Curves 6 4 Temperature Characteristics Figure 13 LED Current Error vs Ambient Temperature VIN 14 V Number of LEDs in s...

Page 12: ...resistor divider network R23 and R4 The internal reference clamp of 2 4 V can be activated by depopulating resistor R4 and connecting IADJ to VCC through pull up resistor R23 External control via IADJ...

Page 13: ...VIADJ VIN 14 V Number of LEDs in Series 3 6 6 PWM Dimming In order to enable EVM at power up the PWM pin of TPS92691 Q1 is tied to VCC through a 100 k pullup resistor R14 The PWM pin can be over driv...

Page 14: ...ge Time 400 ms div spaCh3 Switch sense current resistor R15 voltage Time 1 s div Figure 21 Over Voltage Protection Figure 22 SYNC Operation spaCh1 DDRV voltage Ch2 PWM input TP3 spaCh1 DDRV voltage Ch...

Page 15: ...re 26 PWM Dimming Duty cycle 4 Frequency 240 Hz 240 Hz spaCh2 IADJ voltage Ch3 IMON voltage spaCh1 IMON voltage Ch2 IADJ voltage spaCh4 LED current Time 200 s div spaCh4 LED current Time 10 s div Figu...

Page 16: ...Ch4 LED current Time 1 ms div Figure 30 Start Stop Warm Crank Transient Response 6 8 EMI Figure 31 Conducted EMI Based on CISPR 25 Class 3 Limits 16 TPS92691 SEPIC LED Driver Evaluation Board SLVUAL8...

Page 17: ...is achieved by pulling the IADJ pin to VCC through an external resistor The slope compensation voltage can be adjusted by changing the switch current sense resistor RIS R15 based on the maximum expect...

Page 18: ...ti com Figure 33 Top Layer and Top Overlay Top View Figure 34 Bottom Layer and Bottom Overlay Bottom View 18 TPS92691 SEPIC LED Driver Evaluation Board SLVUAL8 December 2015 Submit Documentation Feed...

Page 19: ...3 1 100pF CAP CERM 100 pF 50 V 5 C0G NP0 0603 C1608C0G1H101J TDK C28 1 0 01uF CAP CERM 0 01 F 100 V 10 X8R 0603 C1608X8R2A103K TDK D1 1 30V Diode Schottky 30 V 0 2 A SOD 323 SOD 323 BAT54HT1G ON Semic...

Page 20: ...03 CRCW060310K0FKEA Vishay Dale R15 1 0 06 RES 0 06 1 1 W 2010 2010 CSRN2010FK60L0 Stackpole R16 1 1 00k RES 1 00 k 1 0 25 W 1206 1206 CRCW12061K00FKEA Vishay Dale R17 1 0 RES 0 5 0 25 W 1210 1210 MCR...

Page 21: ...ing the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty If TI elects to repair or replace such EVM TI shall have a reasonable time to repa...

Page 22: ...transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indic...

Page 23: ...ified allowable ranges some circuit components may have elevated case temperatures These components include but are not limited to linear regulators switching transistors pass transistors current sens...

Page 24: ...REMOVAL OR REINSTALLATION ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES RETESTING OUTSIDE COMPUTER TIME LABOR COSTS LOSS OF GOODWILL LOSS OF PROFITS LOSS OF SAVINGS LOSS OF USE L...

Page 25: ...sponsible for compliance with all legal regulatory and safety related requirements concerning its products and any use of TI components in its applications notwithstanding any applications related inf...

Reviews: