Texas Instruments BQ25883 User Manual Download Page 10

Test Summary

www.ti.com

10

SLUUC10 – February 2019

Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

BQ25883 QFN boost-mode battery charger evaluation module

Advance Information

2.4

Helpful Tips

The following list provides a few helpful tips:

The leads and cables to the various power supplies, batteries, and loads have resistance. The current
meters also have series resistance. The charger dynamically reduces charge current depending on the
voltage sensed at its VBUS pin (using the VINDPM feature), BAT pin (as part of normal termination),
and TS pin (through its battery temperature monitoring feature through the battery thermistor).
Therefore, the designer must use voltmeters to measure the voltage as close to the IC pins (TP7,
TP15, and TP16) as possible instead of relying on the digital readouts of the power supply.

When using a source meter that can source and sink current as the battery simulator, TI highly
recommends adding a large (1000

μ

F or greater) capacitor at the EVM BAT and GND connectors to

prevent oscillations at the BAT pin, which are due to mismatched impedances of the charger output
and source meter input within their respective regulation loop bandwidths. Configuring the source
meter for four-wire sensing eliminates the requirement for a separate voltmeter to measure the voltage
at the BAT pin. When using four-wire sensing, always ensure that the sensing leads are connected to
prevent accidental overvoltage by the power supply.

For precise measurements of efficiency and charge current or battery regulation (or both) near
termination, a current meter in series with the battery or battery simulator must not be set to auto-range
and may require removal, entirely. This EVM offers an alternate method for measuring currents by
measuring the voltage across a 1%, thermally-capable (for example, 0.010

Ω

in a 1210 or larger

footprint) resistor in series between the power sources and power pins.

3

PCB Layout Guidelines

Minimize the switching node rise and fall times for minimum switching loss. Proper layout of the
components that minimize the high-frequency current path loop is important to prevent electrical and
magnetic field radiation and high-frequency resonant problems. To ensure proper layout, follow the priority
list for this printed-circuit board (PCB) in the order presented:

1. Place the output capacitor as close as possible to the SYS pin and GND pin connections and use the

shortest copper trace connection or GND plane.

2. Put the input capacitors near to the VBUS and PMID pins. Tie ground connections to the IC ground

with a short copper trace connection or GND plane.

3. Place the inductor input terminal as close to the SW pin as possible. Minimize the copper area of this

trace to lower electrical and magnetic field radiation but make the trace wide enough to carry the
charging current. Do not use multiple layers in parallel for this connection. Minimize parasitic
capacitance from this area to any other trace or plane.

4. Route analog ground separately from power ground. Connect analog ground and connect power

ground separately. Connect analog ground and power ground together using the power pad as the
single ground connection point or use a 0-

Ω

resistor to tie analog ground to power ground.

5. Use a single ground connection to tie the charger power ground to the charger analog ground just

beneath the IC. Use ground copper pour but avoid power pins to reduce inductive and capacitive noise
coupling.

6. Place decoupling capacitors next to the IC pins and make the trace connection as short as possible.

7. One critical note regarding the layout is that the exposed power pad on the backside of the IC package

must be soldered to the PCB ground. Ensure that there are sufficient thermal vias directly under the IC
connecting to the ground plane on the other layers.

8. The via size and number must be sufficient for a given current path.

See the EVM design for the recommended component placement with trace and via locations..

Summary of Contents for BQ25883

Page 1: ...aluation module are synonymous with the BQ25883 QFN evaluation module unless otherwise noted Contents 1 Introduction 2 1 1 EVM Features 2 1 2 I O Descriptions 2 2 Test Summary 4 2 1 Equipment 4 2 2 Ch...

Page 2: ...an onboard USB input adapter for connecting to a USB source and either communication through D D to set the default input current limit Use the EV2400 interface to program parameters for charge opera...

Page 3: ...in to GND NA JP10 Pulls up STAT through diode and resistor to pullup source Installed JP11 Pulls up PG through diode and resistor to pullup source Shunt pins 2 and 1 JP12 Pull up SDA through 10 k resi...

Page 4: ...Keithley 2420 Sourcemeter 3 Load 1 Electronic or resistive load capable of sinking up to 3 A at 9 2 V 4 Meters Six Fluke 75 multimeters equivalent or better Alternatively four equivalent voltage mete...

Page 5: ...ff before connecting to the EVM Figure 1 BQ25883 Charge Mode Test Setup 2 Voltmeters 1 through 3 VM1 VM2 and VM3 connect to Kelvin test points for measuring VBUS SYS and BAT as close to the IC pins as...

Page 6: ...PS 1 and click the Read Register button twice Observe everything Normal at the Fault box Observe D4 STAT is off because charge is disabled Observe D5 PG is on indicating power is good Measure on VM2 V...

Page 7: ...ocumentation Feedback Copyright 2019 Texas Instruments Incorporated BQ25883 QFN boost mode battery charger evaluation module Advance Information 2 2 4 Charge Mode Evaluation Results Figure 2 shows the...

Page 8: ...when connecting to the EVM Figure 3 shows the test setup for BQ25883 when in OTG mode including the jumper settings per Table 2 Figure 3 BQ25883 OTG Mode Test Setup 2 Voltmeters 1 through 3 VM1 VM2 an...

Page 9: ...er OTG Voltage Limit 5 0 V OTG Current Limit 600 mA Deselect Enable Charge Deselect Enable HiZ if selected Select Enable OTG 2 3 3 OTG Mode Test Procedure Use the following steps for boost mode verifi...

Page 10: ...between the power sources and power pins 3 PCB Layout Guidelines Minimize the switching node rise and fall times for minimum switching loss Proper layout of the components that minimize the high frequ...

Page 11: ...uments Incorporated BQ25883 QFN boost mode battery charger evaluation module Advance Information 4 Board Layout Schematic and Bill of Materials 4 1 Board Layout Figure 5 through Figure 8 show the PCB...

Page 12: ...PMID PMID 19 20 SW SW 15 16 13 14 BTST REGN 25 BQ25883RGE U1 STAT TS ILIM CD_ CE SDA_GND SCL_OTG D _PSEL D _ PG INT_VSET SW SW 10 0k R9 GND 1uH L1 22uF C5 22uF C12 10uF C6 IBUS up to 3A VSYS up to 8...

Page 13: ...ny C1 1 0 01uF CAP CERM 0 01 uF 25 V 10 X7R 0402 0402 GCM155R71E103 KA37D MuRata C3 C4 2 22uF CAP CERM 22 uF 25 V 20 X5R 0805 0805 GRM21BR61E226 ME44L MuRata C7 C11 2 10uF CAP CERM 10 uF 25 V 20 X5R 0...

Page 14: ...r 100mil 3x1 Tin TH Header 3 PIN 100mil Tin PEC03SAAN Sullins Connector Solutions JP2 JP3 JP5 JP6 JP7 JP10 JP13 JP14 JP15 9 Header 100mil 2x1 Tin TH Header 2 PIN 100mil Tin PEC02SAAN Sullins Connector...

Page 15: ...Gold plated Black Shunt SNT 100 BK G Samtec 969102 0000 DA 3M TP1 TP2 TP3 TP4 TP5 TP6 TP9 TP10 TP12 TP13 TP16 TP17 TP19 TP20 TP21 TP22 16 Test Point Miniature White TH White Miniature Testpoint 5002 K...

Page 16: ...P CERM 110 pF 25 V 5 C0G NP0 0402 0402 GRM1555C1E111J A01D MuRata C18 0 0 1uF CAP CERM 0 1 uF 16 V 10 X7R 0402 0402 GCM155R71C104 KA55D MuRata D1 D3 D6 0 20V Diode Schottky 20 V 1 A 152AD 152AD NSR10F...

Page 17: ...0 25 W AEC Q200 Grade 0 1206 1206 CRCW120682R0J NEA Vishay Dale R26 0 39 2k RES 39 2 k 1 0 063 W AEC Q200 Grade 0 0402 0402 CRCW040239K2F KED Vishay Dale R27 0 75 0k RES 75 0 k 1 0 063 W AEC Q200 Gra...

Page 18: ...18 SLUUC10 February 2019 Submit Documentation Feedback BQ25883 QFN boost mode battery charger evaluation module...

Page 19: ...n and 3 ensuring your application meets applicable standards and any other safety security or other requirements These resources are subject to change without notice TI grants you permission to use th...

Page 20: ...ther than TI b the nonconformity resulted from User s design specifications or instructions for such EVMs or improper system design or c User has not paid on time Testing and other quality control tec...

Page 21: ...These limits are designed to provide reasonable protection against harmful interference in a residential installation This equipment generates uses and can radiate radio frequency energy and if not in...

Page 22: ...instructions set forth by Radio Law of Japan which includes but is not limited to the instructions below with respect to EVMs which for the avoidance of doubt are stated strictly for convenience and s...

Page 23: ...any interfaces electronic and or mechanical between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electr...

Page 24: ...R DAMAGES ARE CLAIMED THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT 9 Return Policy Except as otherwise provided TI does not offer any refunds returns or exchanges Furthe...

Page 25: ...e resources are subject to change without notice TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource Other reprod...

Reviews: