background image

3/15

TDA7296

Table 4. Electrical Characteristcs 

(Refer to the Test Circuit V

S

 = ±24V, R

L

 = 8

, G

V

 = 30dB; R

g

 = 50

;

T

amb 

= 25°C, f = 1 kHz; unless otherwise specified)

Note (*):
MUSIC POWER is the maximal power which the amplifier is capable of producing across the rated load resistance (regardless of non linearity)
1 sec after the application of a sinusoidal input signal of frequency 1KHz.

Note (**): Tested with optimized Application Board (see fig.5)

Symbol

Parameter

Test Condition

Min. 

Typ.

Max.

Unit

V

S

Supply Range

±

10

±

35

V

I

q

Quiescent Current

20

30

65

mA

I

b

Input Bias Current

500

nA

V

OS

Input Offset Voltage

-10

10

mV

I

OS

Input Offset Current

-100

100

nA 

P

O

RMS Continuous Output 
Power

d = 05%
V

S

 = ± 24V, R

L

 = 8

V

S

 = ± 21V, R

L

 = 6

;

V

S

 = ± 18V, R

L

 = 4

;

27
27
27

30
30
30

W
W
W

Music Power (RMS)

t = 1s (*)

d = 10%
V

S

 = ± 29V, R

L

 = 8

V

S

 = ± 24V, R

L

 = 6

V

S

 = ± 22V, R

L

 = 4

60
60
60

W
W
W

d

Total Harmonic Distortion (**)

P

O

 = 5W; f = 1kHz

P

O

 = 0.1 to 20W; f = 20Hz to 20kHz

0.005

0.1

%

V

S

 = ± 18V, R

L

 = 4

;

P

O

 = 5W; f = 1kHz

P

O

 = 0.1 to 20W; f = 20Hz to 20kHz

0.01

0.1

%
%

SR

Slew Rate

7

10

V/

µ

s

G

V

Open Loop Voltage Gain

80

dB

G

V

Closed Loop Voltage Gain (1)

24

30

40

dB

e

N

Total Input Noise

A = curve

1

µ

V

f = 20Hz to 20kHz

2

5

µ

V

f

L ,

f

H

frequency response (-3dB)

P

O

 =1W

20Hz to 20kHz

R

i

Input Resistance

100

k

SVR

Supply Voltage Rejection

f = 100Hz; V

ripple

 = 0.5Vrms

60

75

dB

T

S

Thermal Shutdown

145

°

C

STAND-BY FUNCTION 

(Ref: -Vs or GND)

V

ST on

Stand-by on Threshold

1.5

V

V

ST off

Stand-by off Threshold

3.5

V

ATT

st-by

Stand-by Attenuation

70

90

dB

I

q st-by

Quiescent Current @ Stand-by

1

3

mA

MUTE FUNCTION 

(Ref: -Vs ro GND)

V

Mon

Mute on Threshold

1.5

V

V

Moff

Mute off Threshold

3.5

V

ATT

mute

Mute AttenuatIon

60

80

dB

Summary of Contents for TDA7296

Page 1: ...e of poor supply regulation with high Supply Voltage Rejection The built in muting function with turn on delay sim plifies the remote operation avoiding switching on off noises 70V 60W DMOS AUDIO AMPL...

Page 2: ...am Symbol Parameter Value Unit VS Supply Voltage No Signal 35 V IO Output Peak Current 5 A Ptot Power Dissipation Tcase 70 C 50 W Top Operating Ambient Temperature Range 0 to 70 C Tstg Tj Storage and...

Page 3: ...6 VS 18V RL 4 27 27 27 30 30 30 W W W Music Power RMS t 1s d 10 VS 29V RL 8 VS 24V RL 6 VS 22V RL 4 60 60 60 W W W d Total Harmonic Distortion PO 5W f 1kHz PO 0 1 to 20W f 20Hz to 20kHz 0 005 0 1 VS 1...

Page 4: ...Figure 5 P C B and Components Layout of the Circuit of figure 2 Note The Stand by and Mute functions can be referred either to GND or VS On the P C B is possible to set both the configuration through...

Page 5: ...t to 30db Decrease of Gain Increase of Gain R3 22k Increase of Gain Decrease of Gain R4 22k St by Time Constant Larger St by ON OFF Time Smaller St by ON OFF Time Pop Noise R5 10k Mute Time Constant L...

Page 6: ...t of fig 2 unless otherwise specified Figure 6 Output Power vs Supply Voltage Figure 7 Distortion vs Output Power Figure 8 Output Power vs Supply Voltage Figure 9 Distortion vs Output Power Figure 10...

Page 7: ...urrent vs Supply Voltage Figure 13 Supply Voltage Rejection vs Frequency Figure 14 Mute Attenuation vs Vpin10 Figure 15 St by Attenuation vs Vpin9 Figure 16 Power Dissipation vs Output Power Figure 17...

Page 8: ...levels while maintaining acceptably low harmonic distortion and good behaviour over frequency response more over an accurate control of quiescent current is required A local linearizing feedback provi...

Page 9: ...tly driven by two CMOS logic compatible input pins The circuits dedicated to the switching on and off of the amplifier have been carefully optimized to avoid any kind of uncontrolled audible transient...

Page 10: ...ion are High power performances with limited supply voltage level Considerably high output power even with high load values i e 16 Ohm The characteristics shown by figures 23 and 24 measured with load...

Page 11: ...11 15 TDA7296 Figure 22 Frequency Response of the Bridge Application Figure 23 Distortion vs Output Power Figure 24 Distortion vs Output Power...

Page 12: ...1 52 0 040 0 050 0 060 G1 17 53 17 78 18 03 0 690 0 700 0 710 H1 19 6 0 772 H2 20 2 0 795 L 21 9 22 2 22 5 0 862 0 874 0 886 L1 21 7 22 1 22 5 0 854 0 87 0 886 L2 17 65 18 1 0 695 0 713 L3 17 25 17 5...

Page 13: ...6 0 063 E 0 49 0 55 0 019 0 022 F 0 66 0 75 0 026 0 030 G 1 02 1 27 1 52 0 040 0 050 0 060 G1 17 53 17 78 18 03 0 690 0 700 0 709 H1 19 6 20 2 0 772 0 795 H2 19 6 20 2 0 772 0 795 L1 17 80 18 00 18 2...

Page 14: ...e 5 Revision History Date Revision Description of Changes January 2004 8 First Issue in EDOCS DMS September 2004 9 Added Package Multiwatt15 Horizontal Short leads February 2005 10 Corrected mistyping...

Page 15: ...n supersedes and replaces all information previously supplied STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written a...

Reviews: