background image

Feeder Antennas

The AR9300 incorporates feeder antennas, which are designed to be easily mounted through the 

fuselage in carbon airplanes. The main receiver has two 8-inch feeder antennas and the remote 

receiver has one. Each feeder antenna includes a coaxial portion (which can be thought of as an 

extension) and an exposed 31mm tip antenna. The last 31mm is the active portion of the antenna. 

   

 

 

 

Step 1. Identifying the Types of Carbon Aircraft

While some sailplanes are full carbon construction, most only use carbon in areas that require extra 

strength. Many of the latest sailplanes are constructed with 2.4GHz-friendly fuselages meaning that the 

forward section of the fuselage is constructed from non-conductive materials like fiberglass and Kevlar 

that don’t affect the RF signal. The first step in a proper installation is identifying the type of aircraft 

which will fall into one of three categories below.

A. Full Carbon

All components of the airplane including the entire fuselage,  

the wing and tail are constructed of carbon fiber or have a  

carbon fiber weave throughout the aircraft.
This type of aircraft will require that all antennas  

be installed externally.

B. 2.4GHz Friendly Fuselage with Carbon Wing

The section forward of the wing is constructed of non- 

conductive materials like fiberglass, Kevlar, etc. but the  

wing and possibly the tail section have carbon or carbon  

weave construction. 
Antennas in the nose of this type of aircraft can be  

installed internally while an antenna installed behind  

the wing must be mounted externally.
 

C. 2.4GHz Friendly Fuselage with Molded  

     Non-Carbon Wing    

The section forward of the wing and the wing itself is  

constructed of non-conductive materials like fiberglass,  

Kevlar, etc. The wing may, however, contain a carbon spar,  

which is an insignificant volume of carbon to have an effect.  

The tail section can be either carbon, carbon weave or  

fiberglass construction. 
All antenna can be mounted internally forward of the 

wing in this type of aircraft.

Step 2. Determining Antenna Mounting Positions

After determining the type of aircraft from the list above, use the above illustrations as a guideline 

as to where the feeder antennas should be mounted. The goal is to mount the antennas in a location 

such that at least two will always be in the RF visual line of sight of the transmitter (i.e. not blocked by 

carbon fiber structures) in all attitudes. This can easily be visualized by having a helper stand about 

20 feet away and rotate the airplane in all attitudes confirming that in all positions there is a direct line 

between you and at least two receiver antennas that aren’t blocked by carbon fiber structure. 

Note:

 If you have a full carbon sailplane, it is highly recommended that an optional fourth receiver 

with feeder antenna be installed. Carbon Fuselage Remote (SPM9546)
 

AR9300 User Guide

Spektrum’s AR9300 9-channel receiver is designed for carbon fiber aircraft installations. Carbon Fiber 

can create an RF shielding effect that can significantly reduce radio range when using conventional 

receivers and antennas. The AR9300 features an antenna design that overcomes RF issues in these 

critical environments. 
The AR9300 receiver features DSM2

 technology and is compatible with all Spektrum

 and JR

®

 

aircraft radios that support DSM2 technology including Spektrum DX7, DX6i, DX5e, JR12X, 

JRX9303, and Spektrum Module Systems.

Note

: The AR9300 receiver is not compatible with the Spektrum DX6 parkflyer transmitter.

Features:

• 9-Channel receiver optimized for carbon fiber fuselage installations

• Double-stacked design offers compact cross section ideal for sailplanes

• Through-the-fuselage, feeder antennas offer superior RF coverage 

• Includes two internal and one remote receiver. Additional remote receiver optional

• Preset failsafe system on all channels optimized for sailplane applications 

• QuickConnect

 with Brownout Detection 

•  Optional Flight Log (recommended) confirms RF link performance and installation 

before and during flight

• Includes DVD installation and setup video

Applications

Airplanes with Significant Carbon Structure Including:

Carbon/Composite Sailplanes, Carbon/Composite Jets and Aircraft with significant conductive 

materials (Carbon, Aluminum or other metals) that could attenuate (weaken) the signal.

Specifications:

  Type: DSM2 Full Range Receiver for Carbon Fiber Aircraft

  Channels: 9

  Modulation: DSM2

  Dimension (WxLxH):  Main: 20.8 x 40.82 x 19.25mm

   

Remote: 20.25 x 30.05 x 7.45mm

  Weight: 18.23 g (main receiver)

  Input Voltage Range: 3.5–9.6V

  Resolution: 2048

  Compatibility: All DSM2 Aircraft Transmitters and Module Systems 

  Antenna Length: Main: 203mm (2) 

 

                              Remote: 203mm (1)

Receiver Installation in Aircraft

Airplanes with significant carbon fiber construction can create an RF shielding effect, reducing range. 

The AR9300 is designed to overcome these critical RF issues in carbon airplanes by outfitting the 

aircraft with external antennas when necessary at specific points that will ensure secure RF coverage. 

                    

 

Step 3. Installing the Receivers

Install the Main receiver in the normal position recommended by the airplanes’ manufacturer, noting 

that the data/bind port should be easily accessible as a flight log will be used to confirm RF link 

performance. Double-sided tape or foam can be used to secure the main receiver in place. Using 

double-sided servo tape mount the remote receiver(s) within 3 inches from where you intend on 

having the antennas exit the fuselage.

 

 

 

 

                       

Step 4. Mounting the Antennas

Three 2.4GHz Antenna Exit Guides (SPM6824) antenna mounts (with tubes) are included to make 

external mounting easy. To install the antenna mount, drill a 1/8-inch hole in the desired antenna 

mounting position; then, using a hobby knife slot the hole as shown. 

 

 
 
 

 

                      

Insert the tube in the mount; then using medium CA, glue the mount and tube in place in the fuselage. 

Trim the tube to length inside the fuselage if necessary. Now slide the feeder antenna through the tube 

until the 31mm tip completely exits the mount. Using a drop of CA, glue the antenna to the mount 

making sure that the 31mm active portion of the antenna tip is fully exposed.

Note:

 If the antenna is to be mounted internally (in the front of a 2.4GHz friendly fuselage) the coax 

can be taped into position. Be sure the 31mm tip is located at least 2 inches from any significant 

carbon structure and from the battery.

Step 5. Plugging in the Servo Leads

Plug the servo leads into the appropriate servo ports in the receiver noting the polarity of the servo 

connector. Note that the signal wire (orange for JR servos) faces toward the center of the receiver. 

Consult your radio’s manual for specific detail as to which servo plugs connect into which servo port 

channel.

Step 6. Binding the Receiver

Binding

The AR9300 must be bound to the transmitter before it will operate. Binding is the process of teaching 

the receiver the specific code of the transmitter so it will only connect to that specific transmitter. 

1.

 To bind an AR9300 to a DSM2 transmitter, insert the bind plug in the BATT/BIND port on the receiver.

 

 

2.

  Power the receiver. Note that the LED on the receiver should be flashing, indicating that the receiver 

is in bind mode and ready to be bound to the transmitter.

     

3.

  Move the sticks and switches on the transmitter to the desired failsafe positions (normally mid flap 

for dethermalizing). 

 

   

  

  

4.

  Follow the procedures of your specific transmitter to enter Bind Mode, the system will connect  

within a few seconds. Once connected, the LED on the receiver will go solid indicating the system 

is connected.

5.

  Remove the bind plug from the BATT/BIND port on the receiver before you power off the transmitter 

and store it in a convenient place.

IMPORTANT

: Remove the bind plug to prevent the system from entering bind mode the next time the 

power is turned on.

Step 7. Radio Setup and Programming

Following the instructions in your radio manual, program your airplane.

Step 8. Rebinding the Receiver

After you’ve programmed your model, it’s important to rebind the system so the true failsafe control 

surface positions are set.

Step 9. 

Ground Range Testing and Verification with Flight Log

Advanced Range Testing Using a Flight Log

In airplanes that have significant carbon fiber construction it is imperative to first do a ground range 

check using a flight log. This ground range check will confirm that the internal and remote receivers 

are operating optimally and that the antennas are properly mounted in a position that will give positive 

RF coverage in all attitudes. This Advanced Range Check allows the RF performance of each receiver 

and the positions of each antenna to be verified and to optimize the locations of the antennas.

Advanced Range Test

1.  Plug a Flight Log (SPM9540) into the data port in the AR9300. If the port is being used for the 

battery, a Y-harness can be used or plug the battery into any other unused port. 

2. Turn on the system (Tx and Rx). 

3.   Advance the Flight Log until F- frame losses are displayed by pressing the button on the Flight Log.

3. Have a helper hold your aircraft while observing the Flight Log data.

4.  Standing 30 paces away from the model, face the model with the transmitter in your normal flying 

position and put your transmitter into range test mode. This causes reduced power output from the 

transmitter.

5.  Have your helper position the model covering all orientations (nose up, nose down, nose toward the 

Tx, nose away from the Tx, etc.) while your helper watches the Flight Log noting any correlation 

between the aircraft’s orientation and frame losses. Do this for one minute. The timer on the 

transmitter can be used here.

6.  After one minute release the range test button and read the data from the Flight Log. A successful 

installation will yield the following:

      

0 - holds, less than 20 Frame Losses 

It’s common to see high values on individual receivers as the carbon structure can block the signal 

in various orientations. What is important is that at least two receivers are receiving well at all times. 

If more than 20 frame losses or any holds occur redo the test noting the aircraft orientation when 

the fades and holds occur. This will allow you to change and optimize the antenna position(s) to a 

better location.

Step 10. Short Test Flight Verification with Flight Log

When the system tests successfully as directed above, it’s time for a short near test flight. This first 

flight should be close (less than 500 ft and about five minutes). After the flight, land your aircraft 

nearby (less than 60 ft away)* and check the Flight Log data. Again a successful flight will result in 0 

holds and less than 20 Frame losses. Extend the flight distance and times checking the Flight Log data 

after every flight until you are confident with the results. Many pilots choose to mount the Flight Log in 

the airplane making data checking convenient.  

*If the sailplane is landed more than 60 feet from the transmitter the system may experience higher 

than normal frame losses and holds. This is because the antennas are within inches of the ground and 

the signal can be blocked by the ground causing RF link degradation. Note that when landing more 

than 60 feet from yourself, high flight log values are normal. 

Important: Y-Harnesses and Servo Extensions

When using a Y-harness or servo extensions in your installation, it’s important to use standard non- 

amplified Y-harnesses and servo extensions as this can/will cause the servos to operate erratically 

or not function at all. Amplified Y-harnesses were developed several years ago to boost the signal 

for some older PCM systems and should not be used with Spektrum equipment. Note that when 

converting an existing model to Spektrum be certain that all amplified Y-harnesses and/or servo 

extensions are replaced with conventional non-amplified versions. 

Preset Failsafe

The AR9300 features Preset failsafe only. Preset Failsafe is ideal for sailplanes, allowing the aircraft to 

automatically dethermalize if signal is lost. With Preset Failsafe, when signal is lost all channels go to 

their preset failsafe positions (normally mid flap) preventing a flyaway.
• Prevents flyaways should the signal be lost
• Eliminates the possibility of over-driving servos

Receiver Power Only

•  When the receiver only is turned on (no transmitter signal is present), all channels have no output 

signal, to avoid overdriving the servos and linkages.

Note:

 Some analog servos may drift slightly during power-up even though no signal is present. This 

is normal.
 

Shown using a separate receiver pack. 

(Battery can be plugged into any open port.)

When binding through an ESC, the ESC’s lead must be plugged  

into the port operating the motor, typically the gear or AUX2  

channel. The servo monitor is helpful in determining which  

channel is being used.

External

antennas

Internal

antennas

External

antennas

Internal

antennas

Optional

 location

 Full Carbon

2.4GHz Friendly  

Fuselage with  

Carbon Wing

2.4GHz Friendly  

Fuselage with  

Molded Non-

Carbon Wing

AR9300 installed in a Supra.

 

31 mm

 203mm

1. 13 D i ameter

Reviews: