background image

A N 5 8 8

6

Rev. 0.2

6.  Energy Harvesting System

The energy harvesting system used in this reference design, shown in Figure 8, consists of three components:
energy management circuitry to harvest energy, energy storage, and energy management circuitry to convert the
stored energy into a form usable by the wireless sensor. 

Figure 8. Energy Harvesting System

The energy management circuitry used for harvesting energy consists of a solar cell which provides dc energy, a
rectifier which can be used to convert ac vibration energy into dc energy, and the LTC 4071 which takes in dc
energy and regulates it to a constant 4.1 V. The LTC4071 also protects the battery from overdischarge (by
disconnecting it from the circuit if its voltage gets too low) and provides a “ship mode” that disconnects the battery
during shipping and allows it to hold its energy until the end user starts up the system. 

The energy storage used in this reference design is a 4.1 V, 700 µA-H thin film battery from IPS. This battery
provides enough energy storage to keep the system running for many days without any “harvested” power. In any
energy harvesting system, it is important to keep the energy used by the system lower than the amount of
“harvested” energy in order to prevent a steady depletion of the stored energy. The larger the energy storage
reservoir, the longer the system can go without “harvesting” new energy from the environment.

The energy management circuitry at the output of the energy storage converts the 4.1 V thin film battery voltage to
a regulated 2.7 V for use by the Si1012 Wireless MCU. The main components of this circuit are an ultra low power
LDO (ADP162), a brownout detector (NCP302), and a 100 µF tantalum capacitor to supply the peak currents
required for RF transmission. The LDO’s shutdown pin is tied to the output of the brownout detector, so that the
system is not powered until the 100 µF capacitor is charged up to at least 3.0 V. This ensures that the system will
not attempt to power up unless it has enough stored energy to get it through the power up sequence. 

The energy harvesting system requires approximately 3 µA to operate. This is easily cancelled out by as little as
50 lux light shining on the solar cell. The energy harvesting system can remain in a dark closet for 1 week before all
the stored energy is depleted. When the system is going to be placed in a dark area for a prolonged period of time,
it is best to place the S2 switch in “OFF” mode, which activates the “ship mode” and disconnects the battery from
the system. This allows the system to hold its current state until the S2 switch is placed in the “SOLAR” position.

Energy Storage

Energy 

Management

(input)

Solar

Thermal

Vibration

RF Energy

Energy 

Management

(output)

Regulated 

System 

Voltage

Summary of Contents for Si1012

Page 1: ...attery height is 0 17 mm The system consists of two components a wireless Sensor node and an EZRadioPRO USB Dongle The Sensor Node uses a Silicon Labs Si1012 wireless MCU The Dongle uses a Silicon Lab...

Page 2: ...scharged state Be sure to fully charge the Node prior to first use Refer to 8 Additional Information on page 8 for details and charging times Figure 2 Si1012 Sensor Node The USB Dongle is powered by t...

Page 3: ...O dongle is plugged into a USB port on the PC 1 Launch the program which is found by clicking Start All Programs Silicon Laboratories WDS3 2 Select Harvesting Demo 3 Go through the on screen menu unti...

Page 4: ...t successfully receives a valid packet 8 The Energy Harvesting Application will designate the first Sensor Node to associate as Node 1 Up to 4 nodes are allowed to associate Cover the solar cell or sh...

Page 5: ...all received packets is displayed Selecting a packet will decode the raw data and display the extracted information in the VBAT TEMP and LIGHT_LEVEL fields Figure 7 Energy Harvesting Demo NodeInfo Vie...

Page 6: ...energy The larger the energy storage reservoir the longer the system can go without harvesting new energy from the environment The energy management circuitry at the output of the energy storage conv...

Page 7: ...ption both in sleep and active modes Figure 9 shows a simplified activity profile for the active mode RF packet transmission once a second The peak current is 29 mA when the RF transmitter is enabled...

Page 8: ...ly charged 30 minutes by plugging in a ToolStick Base Adapter and setting the power source switch to USB Figure 10 shows approximate charging times for a fully depleted system under various charging c...

Page 9: ...AN588 Rev 0 2 9 9 Schematic Figure 11 Energy Harvesting Node Schematic 1 of 3...

Page 10: ...AN588 10 Rev 0 2 Figure 12 Energy Harvesting Node Schematic 2 of 3...

Page 11: ...AN588 Rev 0 2 11 Figure 13 Energy Harvesting Node Schematic 3 of 3...

Page 12: ...dditionally Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters Silicon Laboratories reserves the right to make changes without further notice Sili...

Reviews:

Related manuals for Si1012