background image

TZA3046_1

© Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Product data sheet

Rev. 01 — 19 May 2006

14 of 15

Philips Semiconductors

TZA3046

Fiber Channel/Gigabit Ethernet transimpedance amplifier

17. Legal information

17.1

Data sheet status

[1]

Please consult the most recently issued document before initiating or completing a design.

[2]

The term ‘short data sheet’ is explained in section “Definitions”.

[3]

The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL

http://www.semiconductors.philips.com.

17.2

Definitions

Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. Philips Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local Philips Semiconductors
sales office. In case of any inconsistency or conflict with the short data sheet,
the full data sheet shall prevail.

17.3

Disclaimers

General — Information in this document is believed to be accurate and
reliable. However, Philips Semiconductors does not give any representations
or warranties, expressed or implied, as to the accuracy or completeness of
such information and shall have no liability for the consequences of use of
such information.

Right to make changes — Philips Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — Philips Semiconductors products are not designed,
authorized or warranted to be suitable for use in medical, military, aircraft,
space or life support equipment, nor in applications where failure or
malfunction of a Philips Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. Philips Semiconductors accepts no liability for inclusion and/or use
of Philips Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is for the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. Philips Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) may cause permanent
damage to the device. Limiting values are stress ratings only and and
operation of the device at these or any other conditions above those given in
the Characteristics sections of this document is not implied. Exposure to
limiting values for extended periods may affect device reliability.

Terms and conditions of sale — Philips Semiconductors products are sold
subject to the general terms and conditions of commercial sale, as published
at

http://www.semiconductors.philips.com/profile/terms

, including those

pertaining to warranty, intellectual property rights infringement and limitation
of liability, unless explicitly otherwise agreed to in writing by Philips
Semiconductors. In case of any inconsistency or conflict between information
in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted
or construed as an offer to sell products that is open for acceptance or the
grant, conveyance or implication of any license under any copyrights, patents
or other industrial or intellectual property rights.

Bare die — All die are tested on compliance with all related technical
specifications as stated in this data sheet up to the point of wafer sawing for a
period of ninety (90) days from the date of delivery by Philips
Semiconductors. If there are data sheet limits not guaranteed, these will be
separately indicated in the data sheet. There are no post-packing tests
performed on individual die or wafers.

Philips Semiconductors has no control of third party procedures in the
sawing, handling, packing or assembly of the die. Accordingly, Philips
Semiconductors assumes no liability for device functionality or performance
of the die or systems after third party sawing, handling, packing or assembly
of the die. It is the responsibility of the customer to test and qualify their
application in which the die is used.

All die sales are conditioned upon and subject to the customer entering into a
written die sale agreement with Philips Semiconductors through its legal
department.

17.4

Trademarks

Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.

18. Contact information

For additional information, please visit:  http://www.semiconductors.philips.com

For sales office addresses, send an email to:  [email protected]

Document status

[1][2]

Product status

[3]

Definition

Objective [short] data sheet

Development

This document contains data from the objective specification for product development.

Preliminary [short] data sheet

Qualification

This document contains data from the preliminary specification.

Product [short] data sheet

Production

This document contains the product specification.

Summary of Contents for TZA3046

Page 1: ...nge typically 2 5 µA to 1 7 mA p p n Differential transimpedance of 7 5 kΩ typical n Bandwidth from DC to 1050 MHz typical n Differential outputs n On chip AGC with possibility of external control n Single supply voltage 3 3 V range 2 97 V to 3 6 V n Bias voltage for PIN diode n On chip current mirror of average photo current for RSSI monitoring n Identical ports available on both sides of die for...

Page 2: ... 1 Ordering information Type number Package Name Description Version TZA3046U bare die dimensions approximately 0 82 mm 1 3 mm Fig 1 Block diagram 290 Ω OUTQ AGC GND OUT VCC GAIN CONTROL BIASING PEAK DETECTOR TZA3046 DPHOTO CDREF CVCC low noise amplifier single ended to differential converter output buffers 7 or 13 8 or 14 IDREF_MON 5 or 16 DREF IDREF 0 2 IDREF IIDREF_MON IPIN RDREF 1 or 3 9 10 11...

Page 3: ...or PIN diode connect cathode of PIN diode to pad 1 or pad 3 IPHOTO 2 493 6 0 input current input anode of PIN diode should be connected to this pad DREF 3 493 6 140 output bias voltage output for PIN diode connect cathode of PIN diode to pad 1 or pad 3 VCC 4 353 6 278 6 supply supply voltage connect supply voltage to pad 4 or pad 17 IDREF_MON 5 213 6 278 6 output current output for RSSI measuremen...

Page 4: ...unt of Consecutive Identical Digits CID will not effect the output waveform A differential amplifier converts the output of the preamplifier to a differential voltage 7 1 PIN diode connections The performance of an optical receiver is largely determined by the combined effect of the transimpedance amplifier and the PIN diode In particular the method used to connect the PIN diode to the input pad I...

Page 5: ...RR and should have a minimum value of 470 pF Increasing this value improves the value of PSRR The current through RDREF is measured and sourced at pad IDREF_MON see Section 7 3 If the biasing for the PIN diode is done external to the IC pad DREF can be left unconnected If a negative bias voltage is used the configuration shown in Figure 4 can be used In this configuration the direction of the sign...

Page 6: ...peak detector and a gain control circuit The peak detector detects the amplitude of the signal and stores it in a hold capacitor The hold capacitor voltage is compared to a threshold voltage The AGC is only active when the input signal level is larger than the threshold level and is inactive when the input signal is smaller than the threshold level When the AGC is inactive the transimpedance is at...

Page 7: ...used if necessary 7 3 Monitoring RSSI via IDREF_MON To facilitate RSSI monitoring in modules e g SFF 8472 compliant SFP modules a current output is provided This output gives a current which is 20 of the average DREF current through the 290 Ω bias resistor By connecting a resistor to the IDREF_MON output a voltage proportional to the average input power can be obtained The RSSI monitoring is imple...

Page 8: ...lues at Tj 25 C and VCC 3 3 V minimum and maximum values are valid over the entire ambient temperature range and supply voltage range all voltages are measured with respect to ground unless otherwise specified Symbol Parameter Conditions Min Typ Max Unit VCC supply voltage 2 97 3 3 3 6 V ICC supply current AC coupled RL dif 100 Ω excluding IDREF and IIDREF_MON 21 23 mA Ptot total power dissipation...

Page 9: ... V IIDREF_MON IDREF monitor current ratio ratio IIDREF_MON IDREF 19 5 20 20 5 Ioffset mon monitor offset current Tamb 25 C 0 10 20 µA TCI offset mon temperature coefficient of monitor offset current 30 nA C Data outputs pads OUT and OUTQ VO cm common mode output voltage AC coupled RL dif 100 Ω VCC 1 2 V Vo dif p p peak to peak differential output voltage AC coupled RL dif 100 Ω IPIN 2 5 µA p p Rtr...

Page 10: ...ailable for OUT and OUTQ The outputs should be used in pairs pad 14 with pad 7 or pad 8 with pad 13 Pad 8 is internally connected with pad 14 pad 7 is internally connected with pad 13 The device is guaranteed with only one pair used The other pair should be left open Two examples of the bonding possibilities are shown in Figure 8 Fig 8 Application diagram highlighting flexible pad lay out C OUT C ...

Page 11: ...onics N V 2006 All rights reserved Product data sheet Rev 01 19 May 2006 11 of 15 Philips Semiconductors TZA3046 Fiber Channel Gigabit Ethernet transimpedance amplifier 11 Test information Total impedance of the test circuit Ztot tc is calculated by the equation Ztot tc s21 R Zi 2 where s21 is the insertion loss of ports 1 and 2 Typical values R 330 Ω Zi 30 Ω Fig 9 Test circuit 001aae519 55 Ω 330 ...

Page 12: ...e Glass passivation 0 3 µm PSG PhosphoSilicate Glass on top of 0 8 µm silicon nitride Bonding pad dimension minimum dimension of exposed metallization is 90 µm 90 µm pad size 100 µm 100 µm except pads 2 and 3 which have exposed metallization of 80 µm 80 µm pad size 90 µm 90 µm Metallization 2 8 µm AlCu Thickness 380 µm nominal Die dimension 820 µm 1300 µm 20 µm2 Backing silicon electrically connec...

Page 13: ...nal information Pad IPHOTO has limited protection to ensure good RF performance This pad should be handled with extreme care 15 Abbreviations 16 Revision history Table 6 Abbreviations Acronym Description BER Bit Error Rate FTTx Fiber To The x OC3 Optical Carrier level 3 155 52 Mbit s PIN Positive Intrinsic Negative PSRR Power Supply Rejection Ratio RSSI Received Signal Strength Indicator SDH Synch...

Page 14: ...or illustrative purposes only Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification Limiting values Stress above one or more limiting values as defined in the Absolute Maximum Ratings System of IEC 60134 may cause permanent damage to the device Limiting values are stress ratings only and and ...

Page 15: ...tion 19 Contents 1 General description 1 2 Features 1 3 Applications 1 4 Ordering information 2 5 Block diagram 2 6 Pinning information 3 6 1 Pinning 3 6 2 Pin description 3 7 Functional description 4 7 1 PIN diode connections 4 7 2 Automatic gain control 6 7 3 Monitoring RSSI via IDREF_MON 7 8 Limiting values 8 9 Characteristics 8 10 Application information 10 11 Test information 11 12 Bare die i...

Reviews: