background image

2003 Mar 20

11

Philips Semiconductors

Objective specification

2

×

 25 W class-D power amplifier

TDA8922

9

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

Notes

1. See Section 16.6.

10 THERMAL CHARACTERISTICS

Note

1. See Section 16.5.

11 QUALITY SPECIFICATION

In accordance with

“General Quality Specification for Integrated Circuits: SNW-FQ-611D” if this device is used as an

audio amplifier.

SYMBOL

PARAMETER

CONDITIONS

MIN.

MAX.

UNIT

V

P

supply voltage

±

30

V

V

MODE

input voltage on pin MODE

with respect to SGND

5.5

V

V

sc

short-circuit voltage on output pins

±

30

V

I

ORM

repetitive peak current in output pin

note 1

4

A

T

stg

storage temperature

55

+150

°

C

T

amb

ambient temperature

40

+85

°

C

T

vj

virtual junction temperature

150

°

C

SYMBOL

PARAMETER

CONDITIONS

VALUE

UNIT

R

th(j-a)

thermal resistance from junction to ambient

in free air; note 1

TDA8922TH

35

K/W

TDA8922J

35

K/W

R

th(j-c)

thermal resistance from junction to case

note 1

TDA8922TH

1.3

K/W

TDA8922J

1.3

K/W

Summary of Contents for TDA8922

Page 1: ...DATA SHEET Objective specification 2003 Mar 20 TDA8922 2 25 W class D power amplifier INTEGRATED CIRCUITS ...

Page 2: ... STEREO AND DUAL SE APPLICATION 15 DYNAMIC AC CHARACTERISTICS MONO BTL APPLICATION 16 APPLICATION INFORMATION 16 1 BTL application 16 2 Pin MODE 16 3 Output power estimation 16 4 External clock 16 5 Heatsink requirements 16 6 Output current limiting 16 7 Pumping effects 16 8 Reference design 16 9 PCB information for HSOP24 package 16 10 Classification 16 11 Bill of materials for reference design 1...

Page 3: ... is 2 25 W The device is available in the HSOP24 power package with a small internal heatsink and in the DBS23P through hole power package Depending on the supply voltage and load conditions a very small or even no external heatsink is required The amplifier operates over a wide supply voltage range from 12 5 to 30 V and consumes a very low quiescent current 4 QUICK REFERENCE DATA Note 1 See Secti...

Page 4: ...R CURRENT PROTECTION STABI MODE INPUT STAGE mute 9 3 8 2 IN1 IN1 22 15 21 14 20 13 17 11 16 10 15 9 VSSP2 VSSP1 DRIVER HIGH DRIVER LOW RELEASE2 SWITCH2 ENABLE2 CONTROL AND HANDSHAKE PWM MODULATOR 11 5 SGND1 7 1 OSC 2 19 SGND2 6 23 MODE INPUT STAGE mute 5 22 4 21 IN2 IN2 19 24 17 VSSD HW 1 1 18 VSSA2 12 6 VSSA1 3 20 VDDA2 10 4 VDDA1 23 16 13 7 18 12 14 8 VDDP2 PROT STABI VDDP1 Fig 1 Block diagram 1...

Page 5: ...io input for channel 1 VDDA1 10 4 positive analog supply voltage for channel 1 SGND1 11 5 signal ground for channel 1 VSSA1 12 6 negative analog supply voltage for channel 1 PROT 13 7 time constant capacitor for protection delay VDDP1 14 8 positive power supply voltage for channel 1 BOOT1 15 9 bootstrap capacitor for channel 1 OUT1 16 10 PWM output from channel 1 VSSP1 17 11 negative power supply ...

Page 6: ...DA1 SGND1 IN1 IN1 VDDA2 IN2 IN2 VSSA2 SGND2 OSC TDA8922TH 1 2 3 4 5 6 7 8 9 10 11 12 24 23 22 21 20 19 18 17 16 15 14 13 Fig 2 Pin configuration TDA8922TH handbook halfpage TDA8922J MGU996 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 PROT BOOT1 VDDP1 VSSP1 OUT1 BOOT2 VSSP2 OUT2 VSSD VDDP2 STABI MODE VSSA1 VDDA1 SGND1 IN1 IN1 VDDA2 IN2 IN2 VSSA2 SGND2 OSC Fig 3 Pin configuration TDA8...

Page 7: ...sor and a maximum current detector are built in The two audio channels of the TDA8922 contain two PWMs two analog feedback loops and two differential input stages It also contains circuits common to both channels such as the oscillator all reference sources the mode functionality and a digital timing manager The TDA8922 contains two independent amplifier channels with high output power high effici...

Page 8: ... Vmode 100 ms 50 ms switching Fig 5 Timing on mode selection input When switching from standby to mute there is a delay of 100 ms before the output starts switching The audio signal is available after Vmode has been set to operating but not earlier than 150 ms after switching to mute When switching from standby to operating there is a first delay of 100 ms before the outputs starts switching The a...

Page 9: ...ll start switching again if the temperature drops to approximately 130 C thus there is a hysteresis of approximately 20 C 8 3 2 SHORT CIRCUIT ACROSS LOUDSPEAKER TERMINALS AND TO SUPPLY LINES When the loudspeaker terminals are short circuited or if one of the demodulated outputs of the amplifier is short circuited to one of the supply lines this will be detected by the current protection If the out...

Page 10: ...d threshold level is as follows Vth unb 0 15 VDD VSS Example With a symmetrical supply of 30 V the protection circuit will be triggered if the unbalance exceeds approximately 9 V see Section 16 7 8 4 Differential audio inputs For a high common mode rejection ratio and a maximum of flexibility in the application the audio inputs are fully differential By connecting the inputs anti parallel the phas...

Page 11: ...used as an audio amplifier SYMBOL PARAMETER CONDITIONS MIN MAX UNIT VP supply voltage 30 V VMODE input voltage on pin MODE with respect to SGND 5 5 V Vsc short circuit voltage on output pins 30 V IORM repetitive peak current in output pin note 1 4 A Tstg storage temperature 55 150 C Tamb ambient temperature 40 85 C Tvj virtual junction temperature 150 C SYMBOL PARAMETER CONDITIONS VALUE UNIT Rth j...

Page 12: ...input voltage note 2 0 5 5 V IMODE input current VMODE 5 5 V 1000 µA Vstb input voltage for standby mode notes 2 and 3 0 0 8 V Vmute input voltage for mute mode notes 2 and 3 2 2 3 0 V Von input voltage for operating mode notes 2 and 3 4 2 5 5 V Audio inputs pins IN1 IN1 IN2 and IN2 VI DC input voltage note 2 0 V Amplifier outputs pins OUT1 and OUT2 VOO SE output offset voltage SE operating and mu...

Page 13: ... with ROSC according to the formula in Section 8 2 SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNIT Internal oscillator fosc typical internal oscillator frequency ROSC 30 0 kΩ 290 317 344 kHz fosc int internal oscillator frequency range note 1 210 600 kHz External oscillator or frequency tracking VOSC voltage on pin OSC SGND 4 5 SGND 5 SGND 6 V VOSC trip trip level for tracking on pin OSC SGND 2 5 V f...

Page 14: ...Vripple Vripple max 2 V p p Rs 0 Ω 6 B 22 Hz to 22 kHz Rs 0 Ω maximum limit is guaranteed but may not be 100 tested 7 B 22 Hz to 22 kHz Rs 10 kΩ SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNIT Po output power RL 8 Ω VP 20 V note 2 THD 0 5 18 20 W THD 10 22 25 W RL 8 Ω VP 25 V note 2 THD 0 5 29 33 W THD 10 36 40 W RL 4 Ω VP 15 V note 2 THD 0 5 18 20 W THD 10 22 25 W THD total harmonic distortion Po 1 ...

Page 15: ...ranteed but may not be 100 tested 4 Output power measured across the loudspeaker load 5 Vripple Vripple max 2 V p p Rs 0 Ω 6 B 22 Hz to 22 kHz Rs 0 Ω maximum limit is guaranteed but may not be 100 tested 7 B 22 Hz to 22 kHz Rs 10 kΩ 8 B 22 Hz to 22 kHz independent of Rs 9 Vi Vi max 1 V RMS fi 1 kHz maximum limit is guaranteed but may not be 100 tested SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNIT P...

Page 16: ...wing expressions SE Maximum current should not exceed 4 A BTL Maximum current should not exceed 4 A Legend RL load impedance fosc oscillator frequency tmin minimum pulse width typical 190 ns VP single sided supply voltage so if supply is 30 V symmetrical then VP 30 V Po 1 output power just at clipping Po 10 output power at THD 10 Po 10 1 25 Po 1 16 4 External clock The minimum required symmetrical...

Page 17: ... of the heatsink required Example 2 Po 2 25 W into 4 Ω Tj max 150 C Tamb 60 C Pdiss tot 5 5 W from Fig 18 The required Rth j a 16 4 K W The Rth j a of the TDA8922 in free air is 35 K W the Rth j c of the TDA8922 is 1 3 K W thus a heatsink of 15 1 K W is required for this example 16 6 Output current limiting To guarantee the robustness of the class D amplifier the maximum output current which can b...

Page 18: ...e detailed description of the implications of output current limiting 16 7 Pumping effects The TDA8922 class D amplifier is supplied by a symmetrical voltage e g VDD 25 V and VSS 25 V When the amplifier is used in a SE configuration a so called pumping effect can occur During one switching interval energy is taken from one supply e g VDD while a part of that energy is delivered back to the other s...

Page 19: ...V S1 C34 100 nF C35 220 nF C36 100 nF C32 220 nF C33 47 pF VSSA2 VDDA2 VSSD STABI PROT HW VSSA VDDA VSSP C37 100 nF C38 220 nF C39 100 nF C22 15 nF C23 15 nF C30 15 nF C31 15 nF C26 470 nF C27 470 nF R10 4 7 Ω C24 560 pF R11 4 7 Ω C25 560 pF R12 22 Ω R13 22 Ω C28 220 nF C29 220 nF L5 27 µH L6 27 µH VDDP2 VSSP2 VDDP SGND SE 4 Ω SE 4 Ω OUT1 OUT1 OUT2 OUT2 VSSP SGND2 J2 4 J1 in 1 in 2 C18 470 nF R8 5...

Page 20: ...sion 4 J4 J3 C3 C38 C14 C33 C29 R13 R12 C28 R1 R2 R5 R11 R10 R6 R7 R9 R8 R4 R3 J1 J2 C6 C7 C34 C25 C24 C23 C22 C9 C12 C36 C37 C39 C15 C32 C13 C10 C31 C30 C35 C21 C20 C8 C11 C2 C5 L3 L2 L4 L5 L6 L1 On Off TDA8920 21 22 23 24TH state of D art PHILIPS SEMICONDUCTORS VDD GND Out2 MBL496 Top copper Top silk screen Bottom copper Bottom silk screen Fig 11 Printed circuit board layout for the TDA8922TH ...

Page 21: ...6 C17 C18 C19 C26 and C27 470 nF 63 V MKT EPCOS B32529 C474 K 12 9 C8 C9 C11 C14 C28 C29 C32 C35 and C38 220 nF 63 V SMD 1206 13 10 C6 C7 C10 C12 C13 C15 C34 C36 C37 and C39 100 nF 50 V SMD 0805 14 2 C20 and C21 330 pF 50 V SMD 0805 15 4 C22 C23 C30 and C31 15 nF 50 V SMD 0805 16 2 C24 C25 560 pF 100 V SMD 0805 17 1 C33 47 pF 25V SMD 0805 18 2 R4 and R3 39 kΩ 0 1 W SMD 0805 19 1 R5 30 kΩ 0 1 W SMD...

Page 22: ...rotection circuit see Section 16 6 The curves illustrated in Figs 30 and 31 show the effects of supply pumping when only one single ended channel is driven with a low frequency signal see Section 16 7 handbook halfpage MGX324 Po W 10 2 10 1 1 10 102 THD N 102 10 1 10 1 10 2 10 3 1 2 3 Fig 12 THD N as a function of output power 2 8 Ω SE VP 20 V 1 10 kHz 2 1 kHz 3 100 Hz handbook halfpage MGX327 fi ...

Page 23: ...ge MGX328 fi Hz 10 102 103 104 105 THD N 102 10 1 10 1 10 2 10 3 1 2 Fig 15 THD N as a function of input frequency 2 4 Ω SE VP 15 V 1 Po 10 W 2 Po 1 W handbook halfpage MGX326 Po W 10 2 10 1 1 10 102 THD N 102 10 1 10 1 10 2 10 3 1 2 3 Fig 16 THD N as a function of output power 1 8 Ω BTL VP 15 V 1 10 kHz 2 1 kHz 3 100 Hz handbook halfpage MGX329 fi Hz 10 102 103 104 105 THD N 102 10 1 10 1 10 2 10...

Page 24: ...0 80 100 Po W 40 0 100 60 80 20 40 MGX333 1 2 3 Fig 19 Efficiency as a function of output power fi 1 kHz 1 2 8 Ω SE VP 20 V 2 2 4 Ω SE VP 15 V 3 1 8 Ω BTL VP 15 V handbook halfpage Po W 10 25 15 30 35 VDD V 20 0 100 60 80 20 40 MGX336 1 2 3 Fig 20 Output power as a function of supply voltage THD N 0 5 fi 1 kHz 1 1 8 Ω BTL 2 2 4 Ω SE 3 2 8 Ω SE handbook halfpage Po W 10 25 15 30 35 VDD V 20 0 100 6...

Page 25: ...i Hz 10 102 103 104 105 2 1 Fig 23 Channel separation as a function of input frequency 2 4 Ω SE VP 15 V 1 Po 1 W 2 Po 10 W handbook halfpage MGX340 G dB 25 20 30 40 35 fi Hz 10 102 103 104 105 1 2 3 Fig 24 Gain as a function of input frequency Vi 100 mV Rs 5 6 kΩ Ci 330 pF 1 1 8 Ω BTL VP 15 V 2 2 8 Ω SE VP 20 V 3 2 4 Ω SE VP 15 V handbook halfpage MGX341 G dB 25 20 30 40 35 fi Hz 10 102 103 104 10...

Page 26: ... frequency as a function of supply voltage RL handbook halfpage MGX346 SVRR dB 80 100 60 20 40 0 fi Hz 10 102 103 104 105 2 1 3 Fig 28 SVRR as a function of input frequency VP 20 V Vripple 2 V p p with respect to ground 1 Both supply lines in phase 2 Both supply lines in anti phase 3 One supply line rippled handbook halfpage SVRR dB 0 3 1 4 5 Vripple p p V 2 100 0 40 20 80 60 MGX347 1 2 3 Fig 29 S...

Page 27: ...ripple p p V 2 0 4 8 6 10 fi Hz 10 102 103 104 1 2 Fig 31 Supply voltage ripple as a function of input frequency 3000 µF per supply line 1 Po 10 W into 1 4 Ω SE VP 15 V 2 Po 10 W into 1 8 Ω SE VP 20 V handbook halfpage MGX342 100 400 200 500 600 fclk kHz 300 THD N 10 1 10 1 10 2 10 3 1 2 3 Fig 32 THD N as a function of clock frequency VP 20 V Po 1 W into 8 Ω 1 10 kHz 2 1 kHz 3 100 Hz handbook half...

Page 28: ... 500 600 fclk kHz 300 0 50 30 40 10 20 MGX343 Fig 35 Output power as a function of clock frequency VP 20 V RL 8 Ω fi 1 kHz THD N 10 handbook halfpage MGX348 Vo V 10 4 10 1 10 5 10 6 10 3 10 2 1 10 VMODE V 6 5 4 3 2 1 0 Fig 36 Output voltage as a function of mode selection voltage Vi 100 mV fi 1 kHz handbook halfpage MGX349 S N dB 40 80 20 0 60 100 120 Po W 10 2 10 1 1 10 103 102 1 2 Fig 36 Signal ...

Page 29: ...e landscape pages to be 16 13 Application schematics handbook full pagewidth OUT1 VSSP1 VDDP2 DRIVER HIGH MGU998 OUT2 BOOT2 TDA8922TH BOOT1 DRIVER LOW RELEASE1 SWITCH1 ENABLE1 CONTROL AND HANDSHAKE PWM MODULATOR RFB RFB MANAGER OSCILLATOR TEMPERATURE SENSOR CURRENT PROTECTION STABI MODE ROSC VSSA Vmode COSC INPUT STAGE mute 9 8 IN1 IN1 22 21 20 17 16 15 VSSP2 VSSP1 DRIVER HIGH DRIVER LOW RELEASE2 ...

Page 30: ...eader white to force landscape pages to be handbook full pagewidth OUT1 VSSP1 VDDP2 DRIVER HIGH MGU999 OUT2 BOOT2 TDA8922J BOOT1 DRIVER LOW RELEASE1 SWITCH1 ENABLE1 CONTROL AND HANDSHAKE PWM MODULATOR RFB RFB MANAGER OSCILLATOR TEMPERATURE SENSOR CURRENT PROTECTION STABI MODE ROSC VSSA Vmode COSC INPUT STAGE mute 3 2 IN1 IN1 15 14 13 11 10 9 VSSP2 VSSP1 DRIVER HIGH DRIVER LOW RELEASE2 SWITCH2 ENAB...

Page 31: ... per individual lead 2 Plastic or metal protrusions of 0 25 mm maximum per side are not included SOT566 3 0 5 10 mm scale HSOP24 plastic heatsink small outline package 24 leads low stand off height SOT566 3 A max detail X A2 3 5 3 2 D2 1 1 0 9 HE 14 5 13 9 Lp 1 1 0 8 Q 1 7 1 5 2 7 2 2 v 0 25 w 0 25 y Z 8 0 θ 0 07 x 0 03 D1 13 0 12 6 E1 6 2 5 8 E2 2 9 2 5 bp c 0 32 0 23 e 1 D 2 16 0 15 8 E 2 11 1 1...

Page 32: ...imum per side are not included SOT411 1 98 02 20 02 04 24 0 5 10 mm scale D L L1 L2 E2 E c A4 A5 A2 m L3 E1 Q w M bp 1 d Z e 2 e e 1 23 j DBS23P plastic DIL bent SIL power package 23 leads straight lead length 3 2 mm SOT411 1 v M D x h Eh non concave view B mounting base side B β e1 bp c D 1 E 1 Z 1 d e Dh L L3 m 0 75 0 60 0 55 0 35 30 4 29 9 28 0 27 5 12 2 54 12 2 11 8 10 15 9 85 1 27 e2 5 08 2 4...

Page 33: ...with a thickness 2 5mm and packages with a thickness 2 5 mm and a volume 350 mm3 so called thick large packages below 235 C for packages with a thickness 2 5 mm and a volume 350 mm3 so called small thin packages 18 3 2 WAVE SOLDERING Conventional single wave soldering is not recommended for surface mount devices SMDs or printed circuit boards with a high component density as solder bridging and no...

Page 34: ... bottom side the solder cannot penetrate between the printed circuit board and the heatsink On versions with the heatsink on the top side the solder might be deposited on the heatsink surface 5 If wave soldering is considered then the package must be placed at a 45 angle to the solder wave direction The package footprint must incorporate solder thieves downstream and at the side corners 6 Wave sol...

Page 35: ...ition Limiting values given are in accordance with the Absolute Maximum Rating System IEC 60134 Stress above one or more of the limiting values may cause permanent damage to the device These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied Exposure to limiting values for ext...

Page 36: ...bility will be accepted by the publisher for any consequence of its use Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights Philips Semiconductors a worldwide company Contact information For additional information please visit http www semiconductors philips com Fax 31 40 27 24825 For sales offices addresses send e mail to sale...

Reviews: