OPTIMUM
M A S C H I N E N - G E R M A N Y
808D
Page 329
Create Part Program Part 1
Brief instruction 808D Milling
Operating and Programming — Milling
Basic Theory
The circle radius shown
in the example on the
right can be produced
with the specified part
program code.
When milling circles and
arcs, you must define
the circle center point
and the distance
between the start point /
end point and the center
point on the relative
coordinate.
When working in the XY
coordinate system, the
interpolation parameters
I and J are available.
N5 G17 G90
G500
G71
N10 T1 D1 M6
N15 S5000 M3 G94 F300
N20 G00 X-20 Y-20 Z
5
N25 G01 Z-
5
N30 G41 X0 Y0
N35 Y50
N40 X100
N45
G02 X125 Y15 I-12 J-35
N50 G01 Y0
N55 X0
N60 G40 X-20 Y-20
N35 G00 Z
500
D0
Note:
N45 can also be written as
follows
N45
G02 X125 Y15 CR=37
Two common types of defining circles and arcs:
①
:
G02/G03 X_Y_I_J_;
②
:
G02/G03 X_Y_CR=_;
Arcs
≤
180º,CR is a positive number
Arcs >180º,CR is negative number
When milling circles, you can only use
①
to define the program!
Milling circles
and arcs
X0, Y 0
X0, Y 50
X1 00, Y 50
X1 25, Y 15
X1 10, Y 0
X
Y
CP
SP
EP
I
J
(I) -12
(J) -35
Determine tool radius of T1 D1
SP = start point of circle
CP = center point of circle
EP = end point of circle
I = defined relative increment from start point to center point in X
J = defined relative increment from start point to center point in Y
G2 = define circle direction in traversing direction = G2 clockwise
G3 = define circle direction in traversing direction = G3 counter-clockwise