
37.5.9 MCU Normal Stop mode operation
Stop mode is a low-power consumption Standby mode during which most or all clock
sources on the MCU are disabled.
37.5.9.1 Normal Stop mode with Alternate clock sources enabled
If Alternate clock source selected for the conversion clock is enabled, the ADC continues
operation during Normal Stop mode. See the chip-specific ADC information for
configuration information for this device.
If a conversion is in progress when the MCU enters Normal Stop mode, it continues until
completion. Conversions can be initiated while the MCU is in Normal Stop mode by
means of the hardware trigger or if continuous conversions are enabled.
If the compare and hardware averaging functions are disabled, a conversion complete
event sets SC1n[COCO] and generates an ADC interrupt to wake the MCU from Normal
Stop mode if the respective ADC interrupt is enabled, that is, when SC1n[AIEN]=1. The
result register, Rn, will contain the data from the first completed conversion that occurred
during Normal Stop mode. If the hardware averaging function is enabled, SC1n[COCO]
will set, and generate an interrupt if enabled, when the selected number of conversions
are completed. If the compare function is enabled, SC1n[COCO] will set, and generate an
interrupt if enabled, only if the compare conditions are met. If a single conversion is
selected and the compare is not true, the ADC will return to its idle state and cannot wake
the MCU from Normal Stop mode unless a new conversion is initiated by another
hardware trigger.
37.6 Usage Guide
37.6.1 ADC module initialization sequence
Before the ADC module can be used to complete conversions, an initialization procedure
must be performed. A typical sequence is as below:
1. Calibrate the ADC by following the calibration instructions in Calibration function.
2. Update CFG to select the input clock source and the divide ratio used to generate
ADCK.
3. Update SC2 to select the conversion trigger, hardware or software, and compare
function options, if enabled.
Chapter 37 Analog-to-Digital Converter (ADC)
Kinetis KE1xF Sub-Family Reference Manual, Rev. 4, 06/2019
NXP Semiconductors
859
Summary of Contents for KE1xF Series
Page 2: ...Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 2 NXP Semiconductors...
Page 138: ...Usage Guide Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 138 NXP Semiconductors...
Page 360: ...Usage Guide Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 360 NXP Semiconductors...
Page 490: ...Interrupts Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 490 NXP Semiconductors...
Page 562: ...Boot Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 562 NXP Semiconductors...
Page 706: ...Usage Guide Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 706 NXP Semiconductors...
Page 736: ...Usage Guide Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 736 NXP Semiconductors...
Page 866: ...Usage Guide Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 866 NXP Semiconductors...
Page 1164: ...Usage Guide Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 1164 NXP Semiconductors...
Page 1178: ...Usage Guide Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 1178 NXP Semiconductors...
Page 1380: ...Usage Guide Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 1380 NXP Semiconductors...
Page 1472: ...Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 1472 NXP Semiconductors...
Page 1482: ...Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 1482 NXP Semiconductors...