background image

LMH6624
Ultra Low Noise Wideband Operational Amplifier

General Description

The LMH6624 combines wide bandwidth (1.5 GBW) with
very low input noise (0.92nV/

, 2.3pA/

) and ultra

low dc errors (100µV V

OS

,

±

0.1µV/˚C drift) providing a very

precise operational amplifier with wide dynamic range. This
enables the user to achieve closed-loop gains of greater
than 10.

The LMH6624’s traditional voltage feedback topology pro-
vides the following benefits: balanced inputs, low offset volt-
age and offset current, very low offset drift, 81dB open loop
gain, 95dB common mode rejection ratio, and 88dB power
supply rejection ratio.

The LMH6624 operates from

±

2.5V to

±

6V in dual supply

mode and from +5V to +12V in single supply configuration.

The LMH6624 is stable for closed-loop gain of A

V

−10 or

+10

A

V

.

LMH6624 is offered in SOT23-5 and SOIC-8 packages.

Features

V

S

=

±

6V, T

A

= 25˚C, A

V

= 20, (Typical values unless

specified)

n

Gain bandwidth

1.5GHz

n

Input voltage noise

0.92nV/

n

Input offset voltage (limit over temp)

700uV

n

Slew rate

350V/µs

n

Slew rate (A

V

= 10)

400V/µs

n

HD2

@

f = 10MHz, R

L

= 100

−65dBc

n

HD3

@

f = 10MHz, R

L

= 100

−80dBc

n

Supply voltage range (dual supply)

±

2.5V to

±

6V

n

Supply voltage range (single supply)

+5V to +12V

n

Improved replacement for the CLC425

Applications

n

Instrumentation sense amplifiers

n

Ultrasound pre-amps

n

Magnetic tape & disk pre-amps

n

Wide band active filters

n

Professional Audio Systems

n

Opto-electronics

n

Medical diagnostic systems

Connection Diagrams

5-Pin SOT23

8−Pin SOIC

20058951

Top View

20058952

Top View

February 2003

LMH6624

Ultra

Low

Noise

W

ideband

Operational

Amplifier

© 2003 National Semiconductor Corporation

DS200589

www.national.com

Summary of Contents for LMH6624

Page 1: ...H6624 is stable for closed loop gain of AV 10 or 10 AV LMH6624 is offered in SOT23 5 and SOIC 8 packages Features VS 6V TA 25 C AV 20 Typical values unless specified n Gain bandwidth 1 5GHz n Input voltage noise 0 92nV n Input offset voltage limit over temp 700uV n Slew rate 350V µs n Slew rate AV 10 400V µs n HD2 f 10MHz RL 100Ω 65dBc n HD3 f 10MHz RL 100Ω 80dBc n Supply voltage range dual supply...

Page 2: ...namic Performance fCL 3dB BW VO 400mVPP 90 MHz SR Slew Rate Note 8 VO 2VPP AV 20 300 V µs VO 2VPP AV 10 360 tr Rise Time VO 400mV Step 10 to 90 4 1 ns tf Fall Time VO 400mV Step 10 to 90 4 1 ns ts Settling Time 0 1 VO 2VPP Step 15 ns Distortion and Noise Response en Input Referred Voltage Noise f 1MHz 0 95 nV in Input Referred Current Noise f 1MHz 2 3 pA HD2 2nd Harmonic Distortion fC 10MHz VO 1VP...

Page 3: ...CM 0V AV 20 RF 500Ω RL 100Ω Boldface limits apply at the temperature extremes See Note 12 Symbol Parameter Conditions Min Note 6 Typ Note 5 Max Note 6 Units Dynamic Performance fCL 3dB BW VO 400mVPP 95 MHz SR Slew Rate Note 8 VO 2VPP AV 20 350 V µs VO 2VPP AV 10 400 tr Rise Time VO 400mV Step 10 to 90 3 7 ns tf Fall Time VO 400mV Step 10 to 90 3 7 ns ts Settling Time 0 1 VO 2VPP Step 14 ns Distort...

Page 4: ...VCM 4 5 to 5 25V VCM 4 5 to 5 0V 90 87 95 dB Transfer Characteristics AVOL Large Signal Voltage Gain RL 100Ω VO 3V to 3V 77 72 81 dB Output Characteristics VO Output Swing RL 100Ω 4 4 4 3 4 9 V No Load 4 8 4 65 5 2 RO Output Impedance f 100KHz 10 mΩ ISC Output Short Circuit Current Sourcing to Ground VIN 200mV Note 3 Note 11 100 85 156 mA Sinking to Ground VIN 200mV Note 3 Note 11 100 85 156 IOUT ...

Page 5: ... by dividing the change in parameter at temperature extremes into the total temperature change Note 8 Slew rate is the slowest of the rising and falling slew rates Note 9 Machine Model 0Ω in series with 200pF Note 10 Simulation results Note 11 Short circuit test is a momentary test Output short circuit duration is 1 5ms Note 12 Electrical table values apply only for factory testing conditions at t...

Page 6: ...Peaking with Varying RF 20058950 20058917 Open Loop Frequency Response Over Temperature Open Loop Frequency Response Over Temperature 20058959 20058960 Frequency Response with Varying VS Frequency Response with Varying VS 20058913 20058914 LMH6624 www national com 6 ...

Page 7: ...ponse Inverting Frequency Response 20058916 20058915 Non Inverting Frequency Response Non Inverting Frequency Response 20058904 20058903 Non Inverting Frequency Response Varying VIN Non Inverting Frequency Response Varying VIN 20058906 20058905 LMH6624 www national com 7 ...

Page 8: ...Varying VIN Non Inverting Frequency Response Varying VIN 20058908 20058907 Frequency Response with Cap Loading Frequency Response with Cap Loading 20058940 20058941 Frequency Response with Cap Loading Frequency Response with Cap Loading 20058939 20058938 LMH6624 www national com 8 ...

Page 9: ...teristics Continued Sourcing Current vs VOUT Sourcing Current vs VOUT 20058957 20058954 Sinking Current vs VOUT Sinking Current vs VOUT 20058958 20058956 VOS vs VSUPPLY IOS vs VSUPPLY 20058955 20058953 LMH6624 www national com 9 ...

Page 10: ...inued Distortion vs Frequency Distortion vs Frequency 20058944 20058946 Distortion vs Frequency Distortion vs Gain 20058945 20058942 Distortion vs VOUT Peak to Peak Distortion vs VOUT Peak to Peak 20058943 20058947 LMH6624 www national com 10 ...

Page 11: ... Signal Pulse Response Non Inverting Large Signal Pulse Response 20058909 20058910 Non Inverting Small Signal Pulse Response Non Inverting Small Signal Pulse Response 20058912 20058911 PSRR vs Frequency PSRR vs Frequency 20058948 20058949 LMH6624 www national com 11 ...

Page 12: ...Typical Performance Characteristics Continued Input Referred CMRR vs Frequency Input Referred CMRR vs Frequency 20058901 20058902 LMH6624 www national com 12 ...

Page 13: ... be isolated with at least a 25Ω series resistor As seen in Figure 2 bias current cancellation is accom plished for the inverting configuration by placing a resistor Rb on the non inverting input equal in value to the resis tance seen by the inverting input Rf Rg Rs Rb should to be no less than 25Ω for optimum LMH6624 performance A shunt capacitor can minimize the additional noise of Rb TOTAL INPU...

Page 14: ...stitutions Equation 1 will yield an eni referred to the non inverting input Referring eni to the inverting input is easily accomplished by multiplying eni by the ratio of non inverting to inverting gains NOISE FIGURE Noise Figure NF is a measure of the noise degradation caused by an amplifier 3 The Noise Figure formula is shown in Equation 3 The addi tion of a terminating resistor RT reduces the e...

Page 15: ...se sources in Figure 10 This plot indicates the expected total equivalent input current noise density ini for a given feedback resistance Rf The total equivalent output voltage noise density eno is ini Rf 5 LOW NOISE INTEGRATOR The LMH6624 implements a deBoo integrator shown in Figure 11 Positive feedback maintains integration linearity The LMH6624 s low input offset voltage and matched inputs all...

Page 16: ...ut exhibits a separation of power supply and ground traces from the inverting input and output pins Para sitic capacitances between these nodes and ground will cause frequency response peaking and possible circuit os cillations see Application Note OA 15 for more information Use high quality chip capacitors with values in the range of 1000pF to 0 1F for power supply bypassing One terminal of each ...

Page 17: ... of other critical components will affect the closed loop behavior of the stage because of the interaction of these resistors with parasitic capacitances These parasitic capacitors could either be inherent to the device or be a by product of the board layout and component placement Moreover a large resistor will also add more thermal noise to the signal path Either way keeping the resistor values ...

Page 18: ...Physical Dimensions inches millimeters unless otherwise noted 5 Pin SOT23 NS Package Number MF05A 8 Pin SOIC NS Package Number M08A LMH6624 www national com 18 ...

Page 19: ...e the failure of the life support device or system or to affect its safety or effectiveness National Semiconductor Americas Customer Support Center Email new feedback nsc com Tel 1 800 272 9959 National Semiconductor Europe Customer Support Center Fax 49 0 180 530 85 86 Email europe support nsc com Deutsch Tel 49 0 69 9508 6208 English Tel 44 0 870 24 0 2171 Français Tel 33 0 1 41 91 8790 National...

Reviews: