Huawei NAD12S10-A Technical Manual Download Page 1

GLOBAL ENERGY EFFICIENCY SPECIALIST 

Copyright©2014 Huawei Technologies Co., Ltd. All Rights Reserved. 

 

THIS DOCUMENT IS FOR INFORMATION PURPOSE ONLY, AND DOES NOT CONSTITUTE ANY KIND OF WARRANTIES. 

Description

 

The NAD12S10-A is a non-isolated DC-DC 
converter with an input voltage range of 9 V to 14 V 
and the maximum output current of 10 A. Its output 
voltage can be adjusted within a range of 0.7 V to 
5.3 V.

 

Mechanical Features 

SMT 

Dimensions: 12.19 mm x 12.19 mm (0.480 in. 

x 0.480 in.) 

Height: ≤ 11.00 mm (0.433 in.) 

Weight: about 3.6 g 

Control Features 

Remote on/off 

Remote sense 

Output voltage trim 

Protection Features 

Input undervoltage protection 

Output overcurrent protection (hiccup mode) 

Output short circuit protection (hiccup mode) 

Output overvoltage protection (Latch off) 

Overtemperature protection    (self-recovery) 

Safety Features

 

UL60950-1 and CSA C22.2 No. 60950-1-07 

Meet UL94V-0 flammability requirements 

RoHS6 compliant 

Operational Features 

Input voltage: 9 - 14 V 

Output current: 0 -10 A 

Output voltage: 0.7 - 5.3 V  

Efficiency: 96.0 % (5.3 V, 10 A) 

NAD12S10-A 

POL 

DC-DC Converter 

9 - 14 V Input 

0.7 - 5.3 V 

Output 

10 A Current 

Positive 

Logic 

NAD12S10-A  
DC-DC Converter Technical Manual V1.1 

Summary of Contents for NAD12S10-A

Page 1: ...ght 11 00 mm 0 433 in Weight about 3 6 g Control Features Remote on off Remote sense Output voltage trim Protection Features Input undervoltage protection Output overcurrent protection hiccup mode Output short circuit protection hiccup mode Output overvoltage protection Latch off Overtemperature protection self recovery Safety Features UL60950 1 and CSA C22 2 No 60950 1 07 Meet UL94V 0 flammabilit...

Page 2: ...on code Designation Explanation Mechanical Diagram Pin No Function 1 On Off 2 Vin 3 GND 4 Vout 5 VS 6 Trim 7 GND 8 NC 9 NC 10 PGOOD 14 NC 16 NC Pin Description 1 All dimensions in mm in Tolerances x x 0 5 mm x xx 0 02 in x xx 0 25 mm x xxx 0 010 in 2 Tolerances for the lengths and widths of all pads are x xx 0 10 mm x xxx 0 004 in EN42PCDG on the label of the module is the internal model used by t...

Page 3: ... set point All 1 0 Vin 12 V Iout 5 A 0 1 tolerance resistor used to set output voltage Output voltage All 0 7 5 3 V Vin 9 14 V Iout 0 10 A Output line regulation All 1 Vin 9 14 V Iout 10 A Output load regulation All 1 Vin 12 V Iout 0 10 A Regulated voltage precision All 3 Vin 9 14 V Iout 0 10 A Temperature coefficient All 0 02 C TA 40 C to 85 C 40 F to 185 F External capacitance All 470 66 470 66 ...

Page 4: ...tion Threshold Hysteresis All 115 5 125 140 C C Self recovery The values are obtained by measuring the temperature of IC Dynamic characteristics Overshoot amplitude Recovery time 1 2 V 60 100 mV µs Current change rate 1 A µs load 25 50 25 50 75 50 Overshoot amplitude Recovery time 1 2 V 5 100 µs Current change rate 1 A µs load 25 50 25 50 75 50 Efficiency 100 load 0 7 V 82 0 83 5 Vin 12 V TA 25 C ...

Page 5: ... V 95 0 96 5 30 load 0 7 V 82 0 83 5 0 8 V 83 0 84 5 0 9 V 84 0 85 5 1 0 V 85 0 86 5 1 2 V 86 0 87 5 1 5 V 87 0 88 5 1 8 V 87 5 89 0 2 5 V 88 5 90 0 3 3 V 89 0 90 5 5 0 V 90 0 91 5 5 3 V 91 0 92 5 Other characteristics Remote on off voltage Low level High level All All 0 2 2 0 0 5 5 0 V V Reliability characteristics Mean time between failures MTBF All 2 5 Million hours Telcordia SR332 Vin 12 V 80 ...

Page 6: ...nical Manual V1 1 Figure 1 0 7 V Efficiency Figure 2 0 7 V Power dissipation Figure 3 0 8 V Efficiency Figure 4 0 8 V Power dissipation Figure 5 0 9 V Efficiency Figure 6 0 9 V Power dissipation Conditions TA 25 C or 77 F unless otherwise specified Characteristic Curves ...

Page 7: ...ical Manual V1 1 Figure 7 1 0 V Efficiency Figure 8 1 0 V Power dissipation Figure 9 1 2 V Efficiency Figure 10 1 2 V Power dissipation Figure 11 1 5 V Efficiency Figure 12 1 5 V Power dissipation Conditions TA 25 C or 77 F unless otherwise specified Characteristic Curves ...

Page 8: ...al Manual V1 1 Figure 13 1 8 V Efficiency Figure 14 1 8 V Power dissipation Conditions TA 25 C or 77 F unless otherwise specified Characteristic Curves Figure 17 3 3 V Efficiency Figure 18 3 3 V Power dissipation Figure 15 2 5 V Efficiency Figure 16 2 5 V Power dissipation ...

Page 9: ...n Figure 20 5 0 V Power dissipation Conditions TA 25 C or 77 F unless otherwise specified Characteristic Curves Figure 21 5 3 V Efficiency Figure 19 5 0 V Efficiency Figure 23 Thermal derating with airflow from pin3 to pin7 Vin 12 V Vout 0 7 V Figure 24 Thermal derating with airflow from pin1 to pin5 Vin 12 V Vout 0 7 V ...

Page 10: ... to pin5 Vin 12 V Vout 0 8 V Figure 27 Thermal derating with airflow from pin3 to pin7 Vin 12 V Vout 0 9 V Figure 28 Thermal derating with airflow from pin1 to pin5 Vin 12 V Vout 0 9 V Conditions TA 25 C or 77 F unless otherwise specified Characteristic Curves Figure 29 Thermal derating with airflow from pin3 to pin7 Vin 12 V Vout 1 0 V Figure 30 Thermal derating with airflow from pin1 to pin5 Vin...

Page 11: ... to pin5 Vin 12 V Vout 1 2 V Figure 33 Thermal derating with airflow from pin3 to pin7 Vin 12 V Vout 1 5 V Figure 34 Thermal derating with airflow from pin1 to pin5 Vin 12 V Vout 1 5 V Conditions TA 25 C or 77 F unless otherwise specified Characteristic Curves Figure 35 Thermal derating with airflow from pin3 to pin7 Vin 12 V Vout 1 8 V Figure 36 Thermal derating with airflow from pin1 to pin5 Vin...

Page 12: ... to pin7 Vin 12 V Vout 5 0 V Figure 37 Thermal derating with airflow from pin3 to pin7 Vin 12 V Vout 2 5 V Conditions TA 25 C or 77 F unless otherwise specified Characteristic Curves Figure 40 Thermal derating with airflow from pin1 to pin5 Vin 12 V Vout 3 3 V Figure 42 Thermal derating with airflow from pin1 to pin5 Vin 12 V Vout 5 0 V Figure 38 Thermal derating with airflow from pin1 to pin5 Vin...

Page 13: ... 3 V Figure 45 Thermal plot with airflow from pin3 to pin7 TA 25 C 77 F Airflow 1 m s 200 FLM Vin 12 V Vout 0 7 V Iout 10 A Figure 46 Thermal plot with airflow from pin1 to pin5 TA 25 C 77 F Airflow 1 m s 200 FLM Vin 12 V Vout 0 7 V Iout 10 A Figure 47 Thermal plot with airflow from pin3 to pin7 TA 25 C 77 F Airflow 1 m s 200 FLM Vin 12 V Vout 1 2 V Iout 10 A Figure 48 Thermal plot with airflow fr...

Page 14: ... plot with airflow from pin3 to pin7 TA 25 C 77 F Airflow 1 m s 200 FLM Vin 12 V Vout 2 5 V Iout 10 A Figure 52 Thermal plot with airflow from pin1 to pin5 TA 25 C 77 F Airflow 1 m s 200 FLM Vin 12 V Vout 2 5 V Iout 10 A Figure 53 Thermal plot with airflow from pin3 to pin7 TA 25 C 77 F Airflow 1 m s 200 FLM Vin 12 V Vout 3 3 V Iout 10 A Figure 54 Thermal plot with airflow from pin1 to pin5 TA 25 ...

Page 15: ...6 Thermal plot with airflow from pin1 to pin5 TA 25 C 77 F Airflow 1 m s 200 FLM Vin 12 V Vout 5 0 V Iout 10 A Figure 57 Thermal plot with airflow from pin3 to pin7 TA 25 C 77 F Airflow 1 m s 200 FLM Vin 12 V Vout 5 3 V Iout 10 A Figure 58 Thermal plot with airflow from pin1 to pin5 TA 25 C 77 F Airflow 1 m s 200 FLM Vin 12 V Vout 5 3 V Iout 10 A Conditions TA 25 C or 77 F unless otherwise specifi...

Page 16: ...m Load Vsource Vin Vout Cin Cout Figure 62 Output voltage ripple for point B in the test set up diagram Vin 12 V Vout 1 2 V Iout 10 A Is 1 Measure the output voltage ripple at B respectively shown in Figure 59 2 During the test of input reflected ripple current the input terminal must be connected to a 12 µH inductor and a 220 µF electrolytic capacitor 3 Point B which is for testing the output vol...

Page 17: ...utdown by power off Vout Vout Vin Vin Figure 63 Startup from On Off Figure 64 Shutdown from On Off Conditions TA 25 C 77 F Vin 12 V Vout On Off Vout On Off Iout Vout Vout Iout Figure 67 Output voltage dynamic response Load 25 50 25 di dt 1 A µs Figure 68 Output voltage dynamic response Load 50 75 50 di dt 1 A µs Typical Waveforms ...

Page 18: ...ltage varies depending on the Rtrim Note that the trim resistor tolerance directly affects the output voltage accuracy It is recommended to use 1 trim resistor The following table describes the mapping between the Vout and Rtrim Figure 70 Rtrim external connections It is recommended to control the On Off pin with an open collector transistor or similar device Remote Sense The remote sense feature ...

Page 19: ...s the output overvoltage protection threshold the converter will be latched off After the overvoltage condition is removed enable the converter by cycling the input power the converter can restart Overtemperature Protection A temperature sensor on the converter senses the average temperature of the module It protects the converter from being damaged at high temperatures When the temperature exceed...

Page 20: ...rovided by measuring the temperature of IC as shown in Figure 73 to protect the converter against overtemperature The Overtemperature protection threshold is also obtained based on thermal test point Thermal Consideration Figure 73 Thermal test point Thermal Test Point Power Dissipation The converter power dissipation is calculated based on efficiency The following formula reflects the relationshi...

Page 21: ...ation HUAWEI TECHNOLOGIES CO LTD Huawei Industrial Base Bantian Longgang Shenzhen 518129 People s Republic of China www huawei com Soldering The converter is compatible with reflow soldering techniques No wave soldering and hand soldering is allowed Figure 74 Recommended reflow profile using lead free solder ...

Reviews: