Rev. 1.00
34
August 29, 2018
Rev. 1.00
35
August 29, 2018
HT45F6530
AC Voltage Regulator Flash MCU
HT45F6530
AC Voltage Regulator Flash MCU
Writing Data to the EEPROM
To write data to the EEPROM, the EEPROM address of the data to be written must first be placed
in the EEA register and the data placed in the EED register. Then the write enable bit, WREN, in
the EEC register must first be set high to enable the write function. After this, the WR bit in the
EEC register must be immediately set high to initiate a write cycle. These two instructions must be
executed in two consecutive instructions. The global interrupt bit EMI should also first be cleared
before implementing any write operations, and then set again after the write cycle has started. Note
that setting the WR bit high will not initiate a write cycle if the WREN bit has not been set. As
the EEPROM write cycle is controlled using an internal timer whose operation is asynchronous to
microcontroller system clock, a certain time will elapse before the data will have been written into
the EEPROM. Detecting when the write cycle has finished can be implemented either by polling the
WR bit in the EEC register or by using the EEPROM interrupt. When the write cycle terminates,
the WR bit will be automatically cleared to zero by the microcontroller, informing the user that the
data has been written to the EEPROM. The application program can therefore poll the WR bit to
determine when the write cycle has ended.
Write Protection
Protection against inadvertent write operation is provided in several ways. After the device is
powered-on the Write Enable bit in the control register will be cleared preventing any write
operations. Also at power-on the Bank Pointer, BP, will be reset to zero, which means that Data
Memory Bank 0 will be selected. As the EEPROM control register is located in Bank 1, this adds a
further measure of protection against spurious write operations. During normal program operation,
ensuring that the Write Enable bit in the control register is cleared will safeguard against incorrect
write operations.
EEPROM Interrupt
The EEPROM write interrupt is generated when an EEPROM write cycle has ended. The EEPROM
interrupt must first be enabled by setting the DEE bit in the relevant interrupt register. When an
EEPROM write cycle ends, the DEF request flag will be set. If the EEPROM interrupt is enabled
and the stack is not full, a jump to the associated EEPROM Interrupt vector will take place. When
the interrupt is serviced, the EEPROM interrupt request flag, DEF, will be automatically reset and
the EMI bit will be automatically cleared to disable other interrupts. More details can be obtained in
the Interrupt section.
Programming Considerations
Care must be taken that data is not inadvertently written to the EEPROM. Protection can be
enhanced by ensuring that the Write Enable bit is normally cleared to zero when not writing. Also
the Bank Pointer could be normally cleared to zero as this would inhibit access to Bank 1 where the
EEPROM control register exists. Although certainly not necessary, consideration might be given
in the application program to the checking of the validity of new write data by a simple read back
process.
When writing data the WR bit must be set high immediately after the WREN bit has been set high,
to ensure the write cycle executes correctly. The global interrupt bit EMI should also be cleared
before a write cycle is executed and then re-enabled after the write cycle starts. Note that the device
should not enter the IDLE or SLEEP mode until the EEPROM read or write operation is totally
complete. Otherwise, the EEPROM read or write operation will fail.