background image

AES 23rd International Conference, Copenhagen, Denmark, 2003 May 23-25 

Statistical Analysis of an Automated 

In-Situ Frequency Response Optimisation 

Algorithm for Active Loudspeakers

 

 

Andrew Goldberg

1

 and Aki Mäkivirta

1

 

1

Genelec Oy, Olvitie 5, 74100 Iisalmi, Finland. 

 
 

ABSTRACT 

 
This paper presents a novel method for automatically selecting the optimal in-situ acoustical frequency response of 
active loudspeakers within a discrete-valued set of responses offered by room response controls on active 
loudspeakers. The rationale of the room response controls for the active loudspeakers is explained. The frequency 
response, calculated from the acquired impulse response, is used as the input for the optimisation algorithm to select 
the most favourable combination of room response controls. The optimisation algorithm is described. The perform-
ance of the algorithm is analysed and discussed. This algorithm has been implemented and is currently in active use 
by specialist loudspeaker system calibrators who set up and tune studios and listening rooms. 
 

 

1. INTRODUCTION 

This paper presents a system to optimally set the room 
response controls currently found on full-range active 
loudspeakers to achieve a desired in-room frequency 
response. The active loudspeakers [1] to be optimised 
are individually calibrated in anechoic conditions to 
have a flat frequency response magnitude within de-
sign limits of ±2.5 dB. 
When a loudspeaker is placed into the listening envi-
ronment the frequency response changes due to loud-
speaker-room interaction. To help alleviate this, the 
active loudspeakers incorporate a pragmatic set of 
room response controls, which account for common 
acoustic issues found in professional listening rooms. 
Although many users have the facility to measure 
loudspeaker in-situ frequency responses, they often do 
not have the experience of calibrating active loud-
speakers. Even with experienced system calibrators, 
significant variance between calibrations can be seen. 
Furthermore, with a number of different people cali-
brating loudspeaker systems, additional variance in 
results will occur. For these reasons an automated 
calibration method was developed to ensure consis-
tency of calibrations. 
Presented first in this paper is the discrete-valued 
room response equaliser employed in the active loud-
speakers. Then, the algorithm for automated value se-
lection is explained including the software structure, 
algorithm, features and operation. The performance of 
the optimisation algorithm is then investigated by 

studying the statistical properties of frequency re-
sponses before and after equalisation.

 

 

2.  IN-SITU EQUALISATION AND ROOM 

RESPONSE CONTROLS 

2.1. Equalisation 

Techniques 

The purpose of room equalisation is to improve the 
perceived quality of sound reproduction in a listening 
environment. The goal of in-room equalisation is usu-
ally not to convert the listening room to anechoic. In 
fact, listeners prefer to hear some room response in 
the form of liveliness that can create a spatial impres-
sion and some envelopment [2]. 
An approach to improve the performance of a loud-
speaker in a room is to choose an optimal location for 
the loudspeaker. Cox and D’Antonio [3] (Room Opti-
miser) use a computer model of the room to find op-
timal loudspeaker positions and acoustical treatment 
location to give an optimally flat in-situ frequency re-
sponse magnitude. Positional areas for the loud-
speaker and listening locations can be given as con-
straints to limit the final solution. Problems with this 
approach are that an optimisation may not be practi-
cally possible in all cases and that this is only half of 
the installation process, as the loudspeaker should be 
corrected for problems caused by the loudspeaker-
room interaction too. 
Electronic equalisation to improve the subjective 
sound quality has been widespread for at least 40 
years; see Boner & Boner [4] for an early example. 

Summary of Contents for Frequency Response Optimisatio

Page 1: ...ce of calibrating active loud speakers Even with experienced system calibrators significant variance between calibrations can be seen Furthermore with a number of different people cali brating loudspeaker systems additional variance in results will occur For these reasons an automated calibration method was developed to ensure consis tency of calibrations Presented first in this paper is the discr...

Page 2: ...al to significantly improve perceived sound quality The practical challenge is the selection of the best settings for the low order in situ equaliser Despite advances in psychoacoustics it is difficult to quantify what the listener actually perceives the sound quality to be or to optimise equalisation based on that evaluation 13 15 Because of this in situ equalisa tion typically attempts to obtain...

Page 3: ...re determined by the crossover filters The bass tilt control compensates for a bass boost seen when the loudspeaker is loaded by large nearby boundaries 33 36 This typically happens when a loudspeaker is placed next to or mounted into an acoustically hard wall This filter is a first order shelv ing filter The bass roll off control compensates for a bass boost often seen at the very lowest frequenc...

Page 4: ...her than using a least squares type objective function is that the bass roll off tends to assume maximum attenuation to minimise the RMS deviation This type of objective function does not yield the best setting as subjectively a loss of bass extension is perceived This stage of the optimiser algorithm takes six filtering steps three for small two way models 3 2 2 Midrange Level to Treble Level Rat...

Page 5: ...tics of experienced calibration engineers The resulting num ber of filtering steps has been dramatically reduced for the larger systems Table 9 and even the relatively simple two way systems show a substantial improve ment when compared to the number of filtering steps needed by direct search method as summarised in Table 5 There are two main reasons for the improve ment the constraint of not allo...

Page 6: ... there is also a 3 dB roll off with 50 Hz being down by 1 dB and 40 Hz by 2 dB Tolerance lines are set to 3 dB with additional leeway at low and high fre quencies 1 An example of the room equaliser settings output for the large system optimised in Figure 1 is shown in Figure 2 The optimised result is displayed in green and dark grey boxes The green boxes are room re sponse controls that should be ...

Page 7: ...d tonal bal ance improvement This is indicated by a reduction of the median value differences 4 2 Example of Statistical Data Analysis Figure 7 in Appendix C shows a case example where room response control settings are calculated accord ing to the optimisation algorithm The equalisation target is a flat magnitude response straight line at 0 dB level The in situ frequency response of the loudspeak...

Page 8: ...subbands show no changes or a slight increase of the RMS deviation Three way systems show a clear reduction in most cases of both the quartile difference Figure 13 and RMS deviation Figure 14 for the broadband and LF subband Slight and equal numbers of increases and reductions are seen for MF and HF subbands A similar trend is seen for the three large systems in cluded in this study Figure 15 16 M...

Page 9: ...n the median level for the LF subband A similar outcome is noted sepa rately for each loudspeaker type However only in the three way systems is an improvement seen also in the MF and HF subband variance 25 to 75 Percentile Difference Change due to Equalisation All models 3 2 1 0 1 Broadband LF MF HF Level dB RMS Deviation Change due to Equalisation All models 5 4 3 2 1 0 1 Broadband LF MF HF Level...

Page 10: ...d room response control settings The settings achieve im proved equalisation in the form of a smaller RMS de viation from the target response The improvement is not limited by the optimisation method but by the room response controls which are not intended to cor rect for narrow band deviations in the frequency re sponse Examples of these are response variations re sulting from acoustic issues suc...

Page 11: ...Thesis at the Helsinki University of Technol ogy 41 8 REFERENCES 1 Genelec Oy http www genelec com 2003 Feb 2 Walker R Equalisation of Room Acoustics and Adaptive Systems in the Equalisation of Small Rooms Acoustics Proc 15th Int Conf paper 15 005 1998 Oct 3 Cox T J and D Antonio P Determining Op timum Room Dimensions for Critical Listening Envi ronments A New Methodology presented in 110th Conv A...

Page 12: ...2001 Sep 29 Mäkivirta A Antsalo P Karjalainen M and Välimäki V Low Frequency Modal Equalisation of Loudspeaker Room Responses presented in 111th Conv Audio Eng Soc preprint 5480 2001 Sept 30 Karjalainen M Esquef P A A Antsalo P Mäkivirta A and Välimäki V Frequency Zooming ARMA Modelling of Resonant and Reverberant Sys tems J Audio Eng Soc vol 50 pp 1012 1029 2002 Dec 31 Moore B C J Glasberg B R Pl...

Page 13: ...User Inputs Model Database Stored Measurement Microphone Compensation CTRL M Measurement Dump Reset Graph and Outputs Get Model Number Apply Mic Compensation Remove DC Window FFT and Smooth Load Impulse Response Set DIPtimisation Range Display Original Freq Response Display Target Response Calculate Target Resp Stored Measurement CLOSE DIPtimiser 1 2 Figure 5 Software flow chart part 1 CLOSE Set F...

Page 14: ...5 2003 14 Is Large System Is Small System Load Filters Model Filters Preset BRO Find ML TL Ratio Set BL BT wrt ML TL Reset BRO Set TT Display Final Tone Control Settings Display Final Frequency Response Set BT Is 3 way System 1 2 Figure 5 continued Software flow chart part 2 Y N N Y ...

Page 15: ...GOLDBERG AND MÄKIVIRTA AUTOMATED IN SITU EQUALISATION AES 23RD CONFERENCE May 23 25 2003 15 APPENDIX B SOFTWARE GRAPHICAL USER INTERFACE Figure 6 Software graphical user interface at start up ...

Page 16: ... AND MÄKIVIRTA AUTOMATED IN SITU EQUALISATION AES 23RD CONFERENCE May 23 25 2003 16 APPENDIX C CASE EXAMPLE STATISTICAL GRAPHS Figure 7 Case example optimisation results Figure 8 Case example statistical output ...

Page 17: ...5 4 0 3 5 3 0 2 5 2 0 1 5 1 0 0 5 0 0 0 5 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A Level dB Low Frequency 25 to 75 Percentile Difference Before Equalisation 0 2 4 6 8 10 12 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A Level dB Low Frequency 25 to 75 Percentile Difference After Equalisation 0 2 4 6 8 10 12 1029A 1029A 1029A 1029A 1029A 1029A...

Page 18: ...2 0 1 5 1 0 0 5 0 0 0 5 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A Level dB High Frequency 25 to 75 Percentile Difference Before Equalisation 0 2 4 6 8 10 12 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A Level dB High Frequency 25 to 75 Percentile Difference After Equalisation 0 2 4 6 8 10 12 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 102...

Page 19: ...to Equalisation 7 6 5 4 3 2 1 0 1 2 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A Level dB Low Frequency RMS Deviation Before Equalisation 0 2 4 6 8 10 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A Level dB Low Frequency RMS Deviation After Equalisation 0 2 4 6 8 10 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A Level dB ...

Page 20: ...Equalisation 7 6 5 4 3 2 1 0 1 2 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A Level dB High Frequency RMS Deviation Before Equalisation 0 2 4 6 8 10 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A Level dB High Frequency RMS Deviation After Equalisation 0 2 4 6 8 10 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A Level dB H...

Page 21: ...ence Before Equalisation 0 2 4 6 8 10 12 1030A 1030A 1031A 1031A 1031A 1031A 1031A 1031A 1031A 1032A 1032A Level dB Low Frequency 25 to 75 Percentile Difference Change due to Equalisation 4 5 4 0 3 5 3 0 2 5 2 0 1 5 1 0 0 5 0 0 0 5 1030A 1030A 1031A 1031A 1031A 1031A 1031A 1031A 1031A 1032A 1032A Level dB Broadband 25 to 75 Percentile Difference After Equalisation 0 2 4 6 8 10 12 1030A 1030A 1031A...

Page 22: ... 3 0 2 5 2 0 1 5 1 0 0 5 0 0 0 5 1030A 1030A 1031A 1031A 1031A 1031A 1031A 1031A 1031A 1032A 1032A Level dB High Frequency 25 to 75 Percentile Difference Before Equalisation 0 2 4 6 8 10 12 1030A 1030A 1031A 1031A 1031A 1031A 1031A 1031A 1031A 1032A 1032A Level dB High Frequency 25 to 75 Percentile Difference After Equalisation 0 2 4 6 8 10 12 1030A 1030A 1031A 1031A 1031A 1031A 1031A 1031A 1031A ...

Page 23: ...ange due to Equalisation 7 6 5 4 3 2 1 0 1 2 1030A 1030A 1031A 1031A 1031A 1031A 1031A 1031A 1031A 1032A 1032A Level dB Low Frequency RMS Deviation Before Equalisation 0 2 4 6 8 10 1030A 1030A 1031A 1031A 1031A 1031A 1031A 1031A 1031A 1032A 1032A Level dB Low Frequency RMS Deviation After Equalisation 0 2 4 6 8 10 1030A 1030A 1031A 1031A 1031A 1031A 1031A 1031A 1031A 1032A 1032A Level dB Low Frequ...

Page 24: ...e due to Equalisation 7 6 5 4 3 2 1 0 1 2 1030A 1030A 1031A 1031A 1031A 1031A 1031A 1031A 1031A 1032A 1032A Level dB High Frequency RMS Deviation Before Equalisation 0 2 4 6 8 10 1030A 1030A 1031A 1031A 1031A 1031A 1031A 1031A 1031A 1032A 1032A Level dB High Frequency RMS Deviation After Equalisation 0 2 4 6 8 10 1030A 1030A 1031A 1031A 1031A 1031A 1031A 1031A 1031A 1032A 1032A Level dB High Frequ...

Page 25: ...tion 0 2 4 6 8 10 12 S30D S30D S30D S30D 1037B 1037B 1037B 1037B 1037B 1038A 1038A 1038A 1038A 1038A 1039A Level dB Low Frequency 25 to 75 Percentile Difference Change due to Equalisation 4 5 4 0 3 5 3 0 2 5 2 0 1 5 1 0 0 5 0 0 0 5 S30D S30D S30D S30D 1037B 1037B 1037B 1037B 1037B 1038A 1038A 1038A 1038A 1038A 1039A Level dB Broadband 25 to 75 Percentile Difference After Equalisation 0 2 4 6 8 10 ...

Page 26: ... 0 5 0 0 0 5 S30D S30D S30D S30D 1037B 1037B 1037B 1037B 1037B 1038A 1038A 1038A 1038A 1038A 1039A Level dB High Frequency 25 to 75 Percentile Difference Before Equalisation 0 2 4 6 8 10 12 S30D S30D S30D S30D 1037B 1037B 1037B 1037B 1037B 1038A 1038A 1038A 1038A 1038A 1039A Level dB High Frequency 25 to 75 Percentile Difference After Equalisation 0 2 4 6 8 10 12 S30D S30D S30D S30D 1037B 1037B 10...

Page 27: ...tion 7 6 5 4 3 2 1 0 1 2 S30D S30D S30D S30D 1037B 1037B 1037B 1037B 1037B 1038A 1038A 1038A 1038A 1038A 1039A Level dB Low Frequency RMS Deviation Before Equalisation 0 2 4 6 8 10 S30D S30D S30D S30D 1037B 1037B 1037B 1037B 1037B 1038A 1038A 1038A 1038A 1038A 1039A Level dB Low Frequency RMS Deviation After Equalisation 0 2 4 6 8 10 S30D S30D S30D S30D 1037B 1037B 1037B 1037B 1037B 1038A 1038A 10...

Page 28: ...n 7 6 5 4 3 2 1 0 1 2 S30D S30D S30D S30D 1037B 1037B 1037B 1037B 1037B 1038A 1038A 1038A 1038A 1038A 1039A Level dB High Frequency RMS Deviation Before Equalisation 0 2 4 6 8 10 S30D S30D S30D S30D 1037B 1037B 1037B 1037B 1037B 1038A 1038A 1038A 1038A 1038A 1039A Level dB High Frequency RMS Deviation After Equalisation 0 2 4 6 8 10 S30D S30D S30D S30D 1037B 1037B 1037B 1037B 1037B 1038A 1038A 103...

Page 29: ...evel dB Low Frequency 25 to 75 Percentile Difference Before Equalisation 0 2 4 6 8 10 12 1036A 1036A 1036A Level dB Low Frequency 25 to 75 Percentile Difference Change due to Equalisation 4 5 4 0 3 5 3 0 2 5 2 0 1 5 1 0 0 5 0 0 0 5 1036A 1036A 1036A Level dB Broadband 25 to 75 Percentile Difference After Equalisation 0 2 4 6 8 10 12 1036A 1036A 1036A Level dB Low Frequency 25 to 75 Percentile Diff...

Page 30: ...ifference Change due to Equalisation 4 5 4 0 3 5 3 0 2 5 2 0 1 5 1 0 0 5 0 0 0 5 1036A 1036A 1036A Level dB High Frequency 25 to 75 Percentile Difference Before Equalisation 0 2 4 6 8 10 12 1036A 1036A 1036A Level dB High Frequency 25 to 75 Percentile Difference After Equalisation 0 2 4 6 8 10 12 1036A 1036A 1036A Level dB High Frequency 25 to 75 Percentile Difference Change due to Equalisation 4 ...

Page 31: ... 1036A 1036A Level dB Broadband RMS Deviation Change due to Equalisation 7 6 5 4 3 2 1 0 1 2 1036A 1036A 1036A Level dB Low Frequency RMS Deviation Before Equalisation 0 2 4 6 8 10 1036A 1036A 1036A Level dB Low Frequency RMS Deviation After Equalisation 0 2 4 6 8 10 1036A 1036A 1036A Level dB Low Frequency RMS Deviation Change due to Equalisation 7 6 5 4 3 2 1 0 1 2 1036A 1036A 1036A Level dB Fig...

Page 32: ...036A 1036A Level dB Midrange RMS Deviation Change due to Equalisation 7 6 5 4 3 2 1 0 1 2 1036A 1036A 1036A Level dB High Frequency RMS Deviation Before Equalisation 0 2 4 6 8 10 1036A 1036A 1036A Level dB High Frequency RMS Deviation After Equalisation 0 2 4 6 8 10 1036A 1036A 1036A Level dB High Frequency RMS Deviation Change due to Equalisation 7 6 5 4 3 2 1 0 1 2 1036A 1036A 1036A Level dB Fig...

Reviews: