Fujitsu MB3887 Datasheet Download Page 1

DS04-27709-3E

FUJITSU SEMICONDUCTOR

DATA SHEET

ASSP For Power Supply Applications (Secondary battery) 

DC/DC Converter IC
for Charging Li-ion battery

MB3887

DESCRIPTION

The MB3887 is a DC/DC converter IC suitable for down-conversion, using pulse-width (PWM) charging and
enabling output voltage to be set to any desired level from one cell to four cells.
These ICs can dynamically control the secondary battery’s charge current by detecting a voltage drop in an AC
adapter in order to keep its power constant (dynamically-controlled charging) . 
The charging method enables quick charging, for example, with the AC adapter during operation of a notebook PC.

The MB3887 provides a broad power supply voltage range and low standby current as well as high efficiency,
making it ideal for use as a built-in charging device in products such as notebook PC.
This product is covered by US Patent Number 6,147,477.

FEATURES

• Detecting a voltage drop in the AC adapter and dynamically controlling the charge current

 (Dynamically-controlled charging) 

(Continued)

PACKAGE

24-pin plastic SSOP

 (FPT-24P-M03) 

Summary of Contents for MB3887

Page 1: ...a voltage drop in an AC adapter in order to keep its power constant dynamically controlled charging The charging method enables quick charging for example with the AC adapter during operation of a notebook PC The MB3887 provides a broad power supply voltage range and low standby current as well as high efficiency making it ideal for use as a built in charging device in products such as notebook PC...

Page 2: ... frequency setting capacitor enables frequency setting using external resistor only Oscillation frequency range 100 kHz to 500 kHz Built in current detection amplifier with wide in phase input voltage range 0 V to VCC In standby mode leave output voltage setting resistor open to prevent inefficient current loss Built in standby current function 0 µA standard Built in soft start function independen...

Page 3: ... PIN ASSIGNMENT TOP VIEW FPT 24P M03 1 2 3 4 5 6 7 8 9 10 11 12 INC2 OUTC2 INE2 INE2 FB2 VREF FB1 INE1 INE1 OUTC1 OUTD INC1 24 23 22 21 20 19 18 17 16 15 14 13 INC2 GND CS VCC O OUT VH VCC RT INE3 FB3 CTL INC1 ...

Page 4: ... to prevent loss of current through output voltage setting resistance Set CTL terminal to H level to output L level 12 INC1 I Current detection amplifier Current Amp1 input terminal 13 INC1 I Current detection amplifier Current Amp1 input terminal 14 CTL I Power supply control terminal Setting the CTL terminal at L level places the IC in the standby mode 15 FB3 O Error amplifier Error Amp3 output ...

Page 5: ...mp2 Error Amp2 VREF Error Amp3 VREF VREF VREF 5 0 V 4 2 V 10 µA 15 SOFT 2 5 V 1 5 V OUT UVLO OSC Bias Voltage VH REF CTL PWM Comp Drive VCC VCC 6 V VCC UVLO VCC VCC VCC CTL 215 kΩ 35 kΩ 0 91 V 0 77 V VREF UVLO 4 2 V bias INC2 OUTD FB2 OUTC2 VREF INE2 INE2 INE1 FB1 OUTC1 INE1 INC1 INC2 GND CS VCC O OUT VH RT INE3 FB3 INC1 45 pF ...

Page 6: ...plication of stress voltage current temperature etc in excess of absolute maximum ratings Do not exceed these ratings Parameter Symbol Conditions Rating Unit Min Max Power supply voltage VCC VCC VCC O terminal 28 V Output current IOUT 60 mA Peak output current IOUT Duty 5 t 1 fOSC Duty 700 mA Power dissipation PD Ta 25 C 740 mW Storage temperature TSTG 55 125 C ...

Page 7: ...ed conditions are advised to contact their FUJITSU representatives beforehand Parameter Symbol Conditions Value Unit Min Typ Max Power supply voltage VCC VCC VCC O terminal 8 25 V Reference voltage output current IREF 1 0 mA VH terminal output current IVH 0 30 mA Input voltage VINE INE1 to INE3 INE1 INE2 terminal 0 VCC 1 8 V VINC INC1 INC2 INC1 INC2 terminal 0 VCC V OUTD terminal output voltage VO...

Page 8: ... Hysteresis width VH 18 VCC VCC O 1 0 V Threshold voltage VTLH 6 VREF 2 6 2 8 3 0 V VTHL 6 VREF 2 4 2 6 2 8 V Hysteresis width VH 6 0 2 V 3 Soft start block SOFT Charge current ICS 22 14 10 6 µA 4 Triangular waveform os cillator circuit block OSC Oscillation frequency fOSC 20 RT 47 kΩ 260 290 320 kHz Frequency temperature stability f fdt 20 Ta 30 C to 85 C 1 5 1 Error amplifier block Error Amp1 Er...

Page 9: ...tage VFBH 15 4 7 4 9 V VFBL 15 20 200 mV Output source current ISOURCE 15 FB3 2 V 2 1 mA Output sink current ISINK 15 FB3 2 V 150 300 µA OUTD terminal output leak current ILEAK 11 OUTD 17 V 0 1 µA OUTD terminal output ON resistor RON 11 OUTD 1 mA 35 50 Ω 6 Current detec tion amplifier block Current Amp1 Current Amp2 Input offset voltage VIO 1 12 13 24 INC1 INC2 INC1 INC2 3 V to VCC 3 3 mV Input cu...

Page 10: ...INC1 INC2 0 V to 3 V Vin 100 mV 1 8 2 0 2 2 V VOUTC4 2 10 INC1 INC2 0 V to 3 V Vin 20 mV 0 2 0 4 0 6 V In phase input voltage range VCM 1 12 13 24 0 VCC V Voltage gain AV 2 10 INC1 INC2 3 V to VCC Vin 100 mV 19 20 21 V V Frequency bandwidth BW 2 10 AV 0 dB 2 MHz Output voltage VOUTCH 2 10 4 7 4 9 V VOUTCL 2 10 20 200 mV Output source current ISOURCE 2 10 OUTC1 OUTC2 2 V 2 1 mA Output sink cur rent...

Page 11: ...UT 45 mA 6 5 9 8 Ω ROL 20 OUT 45 mA 5 0 7 5 Ω Rise time tr1 20 OUT 3300 pF Si4435 1 50 ns Fall time tf1 20 OUT 3300 pF Si4435 1 50 ns 9 Control block CTL CTL input voltage VON 14 IC Active mode 2 25 V VOFF 14 IC Standby mode 0 0 8 V Input current ICTLH 14 CTL 5 V 100 150 µA ICTLL 14 CTL 0 V 0 1 µA 10 Bias voltage block VH Output voltage VH 19 VCC VCC O 8 V to 25 V VH 0 to 30 mA VCC 6 5 VCC 6 0 VCC...

Page 12: ...0 15 20 25 VREF ICTL Ta 25 C VCC 19 V Power supply current I CC mA Power supply current vs Power supply voltage Power supply voltage VCC V Reference voltage V REF V Power supply voltage VCC V Reference voltage vs Power supply voltage Reference voltage V REF V IREF load current IREF mA Reference voltage vs IREF load current Reference voltage vs Ambient temperature Reference voltage V REF V Ambient ...

Page 13: ...C 19 V CTL 5 V Triangular wave oscillation frequency vs Timing resistor Triangular wave oscillation frequency f OSC Hz Timing resistor RT kΩ Triangular wave oscillation frequency vs Power supply voltage Triangular wave oscillation frequency f OSC kHz Power supply voltage VCC V Triangular wave oscillation frequency vs Ambient temperature Triangular wave oscillation frequency f OSC kHz Ambient tempe...

Page 14: ... 1 µF Ta 25 C AV φ 40 20 0 20 40 180 90 0 90 180 1 k 10 k 100 k 1 M 10 M Ta 25 C AV φ 40 20 0 20 40 180 90 0 90 180 1 k 10 k 100 k 1 M 10 M 10 13 12 VCC 19 V 20 24 1 2 OUT 12 55 V 12 6 V Current Amp1 Current Amp2 Error amplifier gain and phase vs Frequency Gain A V dB Frequency f Hz Phase φ deg Current detection amplifier gain and phase vs Frequency Gain A V dB Frequency f Hz Phase φ deg Error amp...

Page 15: ...MB3887 15 Continued 800 700 600 500 400 300 200 100 0 740 40 20 0 20 40 60 80 100 Power dissipation vs Ambient temperature Power dissipation P D mW Ambient temperature Ta C ...

Page 16: ...mp2 detects voltage drop of the AC adapter and outputs a PWM control signal In addition an arbitrary loop gain can be set by connecting a feedback resistor and capacitor from the FB2 terminal pin 5 to the INE2 terminal pin 4 of the error amplifier enabling stable phase compensation to the system 5 Error amplifier block Error Amp3 This error amplifier Error Amp3 detects the output voltage from the ...

Page 17: ...places the IC in the standby mode The supply current is 10 µA at maximum in the standby mode CTL function table 10 Bias voltage block VH The bias voltage circuit outputs VCC 6 V Typ as the minimum potential of the output circuit In the standby mode this circuit outputs the potential equal to VCC 2 Protection Functions Under voltage lockout protection circuit UVLO The transient state or a momentary...

Page 18: ...tandby mode the charging voltage is applied to OUTD termial Therefore output voltage must be adjusted so that voltage applied to OUTD terminal is 17 V or less Battery charging voltage VO VO V R3 R4 R4 4 2 V METHOD OF SETTING THE CHARGING CURRENT The charge current output limit current value can be set with the voltage at the INE1 terminal pin 9 If a current exceeding the set value attempts to flow...

Page 19: ...everse input terminals 4 2 V and CS terminal voltage and reverse input terminal voltage INE3 terminal pin 16 voltage Within the soft start period CS terminal voltage 4 2 V FB3 is determined by comparison between INE3 terminal voltage and CS terminal voltage and DC DC converter output voltage goes up propor tionately with the increase of CS terminal voltage caused by charging on the soft start capa...

Page 20: ...ower constant when the partial potential point A of the AC adapter voltage VCC becomes lower than the voltage at the INE2 terminal AC adapter detection voltage setting Vth Vth V R1 R2 R2 INE2 OPERATION TIMING DIAGRAM VCC R1 R2 INE2 INE2 A Error Amp2 4 3 2 5 V 1 5 V Error Amp2 FB2 Error Amp1 FB1 Error Amp2 FB3 OUT Constant voltage control Constant current control AC adapter dynamically controlled c...

Page 21: ...sed connect the INC1 terminal pin 13 INC2 terminal pin 24 INC1 terminal pin 12 and INC2 terminal pin 1 to VREF and then leave OUTC1 terminal pin 10 and OUTC2 terminal pin 2 open 24 13 12 1 2 10 6 INC1 INC1 INC2 INC2 OUTC1 OUTC2 VREF Open Connection when Current Amp is not used ...

Page 22: ...d leave FB1 terminal pin 7 FB2 terminal pin 5 open and connect the INE1 terminal pin 8 and INE2 terminal pin 4 to GND and connect INE1 terminal pin 9 and INE2 terminal pin 3 to VREF 9 5 8 4 7 INE1 GND INE2 INE1 INE2 VREF FB2 FB1 23 6 3 Open Connection when Error Amp is not used ...

Page 23: ...VE DIODE Insert a reverse current preventive diode at one of the three locations marked to prevent reverse current from the battery When selecting the reverse current prevention diode be sure to consider the reverse voltage VR and reverse current IR of the diode 22 CS Open Connection when soft start time is not specified VCC O OUT VIN VH I1 RS BATT Battery A B 21 20 19 ...

Page 24: ...0 pF A B AC Adaptor IIN V O 8 10 13 12 9 4 2 24 1 3 20 20 5 20 21 19 11 16 22 17 6 23 14 18 Current Amp1 7 VREF Current Amp2 VREF VREF VREF VREF 5 0 V 4 2 V 10 µA 15 SOFT 2 5 V 1 5 V OUT OSC Bias Voltage VH REF CTL PWM Comp Drive VCC V CC 6 V VCC UVLO VCC VCC CTL 215 kΩ 35 kΩ 0 91 V 0 77 V VREF UVLO 4 2 V bias INC2 OUTD FB2 OUTC2 VREF INE2 INE2 INE1 FB1 OUTC1 INE1 INC1 INC2 GND CS VCC O OUT VH RT ...

Page 25: ...ics Condenser Ceramics Condenser 22 µF 100 µF 0 022 µF 0 1 µF 1500 pF 0 1 µF 10000 pF 0 1 µF 5600 pF 25 V 10 25 V 10 50 V 16 V 10 V 25 V 10 V 16 V 10 V SANYO SANYO TDK KYOCERA MURATA MURATA MURATA KYOCERA MURATA 25SL22M 25CV100AX C1608JB1H223K CM21W5R104K16 GRM39B152K10 GRM39F104KZ25 GRM39B103K10 CM21W5R104K16 GRM39B562K10 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 to R12 R13 R14 R15 R16 R18 R17 R19 Resistor ...

Page 26: ...iency η VBATT IBATT VIN IIN 100 100 98 96 94 92 90 88 86 84 82 80 0 2 4 6 8 10 12 14 16 18 20 Ta 25 C VIN 19 V BATT charge voltage set at 16 8 V SW ON Efficiency η VBATT IBATT VIN IIN 100 Conversion efficiency vs Charge current Constant voltage mode Conversion efficiency vs Charge current Constant current mode Conversion efficiency η BATT charge current IBATT A Conversion efficiency η BATT charge ...

Page 27: ...ion efficiency η BATT charge current IBATT A Conversion efficiency η BATT charge voltage VBATT V 18 16 14 12 10 8 6 4 2 0 0 1 2 3 2 5 1 5 0 5 4 5 4 5 3 5 Dead Battery MODE DCC MODE DCC Dynamically Controlled Ta 25 C VIN 19 V BATT Electronic load Product of KIKUSUI PLZ 150W 20 18 16 14 12 10 8 6 4 2 0 0 0 5 1 1 5 2 2 5 3 3 5 4 4 5 5 Dead Battery MODE DCC MODE DCC Dynamically Controlled BATT Electro...

Page 28: ... 15 10 5 0 VBATT mV VD V Ta 25 C VIN 19 V BATT 1 5 A 58 mVp p VBATT 0 1 2 3 4 5 6 7 8 9 10 µs VD 100 0 100 15 10 5 0 VBATT mV VD V 96 mVp p VD VBATT 0 1 2 3 4 5 6 7 8 9 10 µs VIN 19 V BATT 3 0 A Ta 25 C Switching waveform constant voltage mode set at 12 6 V Switching waveform constant current mode set at 12 6 V with 10 V Switching waveform constant voltage mode set at 16 8 V Switching waveform con...

Page 29: ...TL V VCS V VBATT V 0 2 4 6 8 10 12 14 16 18 20 ms VBATT ts 10 4 ms VCS VCTL Ta 25 C VIN 19 V BATT 12 Ω 20 10 0 4 2 0 5 0 VCTL V VCS V VBATT V 0 2 4 6 8 10 12 14 16 18 20 ms Ta 25 C VIN 19 V BATT 12 Ω VBATT VCTL VCS Soft start operating waveform constant voltage mode set at 12 6 V Discharge operating waveform constant voltage mode set at 12 6 V Soft start operating waveform constant voltage mode se...

Page 30: ...ing printed circuit boards should be stored and shipped in conductive bags or containers Work platforms tools and instruments should be properly grounded Working personnel should be grounded with resistance of 250 kΩ to 1 MΩ between body and ground Do not apply negative voltages The use of negative voltages below 0 3 V may create parasitic transistors on LSI lines which can cause malfunction ORDER...

Page 31: ... protrusion Dimensions in mm inches C 2001 FUJITSU LIMITED F24018S c 3 4 7 75 0 10 305 004 5 60 0 10 7 60 0 20 220 004 299 008 0 10 004 1 12 13 24 0 65 026 0 07 0 08 0 24 009 003 003 M 0 13 005 INDEX 0 17 0 03 007 001 A 0 25 010 0 10 0 10 004 004 Stand off Details of A part Mounting height 1 25 0 20 0 10 004 008 049 0 8 0 50 0 20 020 008 0 60 0 15 024 006 0 10 004 ...

Page 32: ... and could lead directly to death personal injury severe physical damage or other loss i e nuclear reaction control in nuclear facility aircraft flight control air traffic control mass transport control medical life support system missile launch control in weapon system or 2 for use requiring extremely high reliability i e submersible repeater and artificial satellite Please note that Fujitsu will...

Reviews: